Whatsapp icon Whatsapp

Termo geral da PG

Termo geral da PG é uma fórmula que determina um termo qualquer de uma PG quando conhecemos o primeiro termo, a posição do termo a descobrir e a razão dessa progressão.
Termo geral da PG é uma fórmula usada para encontrar um termo qualquer da PG
Termo geral da PG é uma fórmula usada para encontrar um termo qualquer da PG

O termo geral de uma progressão geométrica (PG) é uma fórmula usada para descobrir um termo qualquer de uma PG. Para isso, é necessário conhecer o primeiro termo, a razão da progressão e a posição do termo a ser encontrado nela.

Considerando-se uma PG qualquer, cujo primeiro elemento é a1 e a razão é “q”, o termo geral an dessa PG é dado pela fórmula:

                                                               an = a1·qn – 1
 

Determinar a fórmula não é tarefa difícil. A fim de que o estudante compreenda bem o método que utilizamos para determinar essa fórmula, primeiro daremos um exemplo tendo como base uma PG e depois faremos o caso geral, de onde a fórmula é obtida.

Veja também: Sequência de Fibonacci
 


Razão e primeiro termo de uma PG

Uma PG é uma sequência numérica onde cada termo é o resultado do produto entre seu antecessor e uma constante, conhecida como razão. Essa característica apenas não é observada no primeiro termo, pois ele não possui antecessor. Veja a seguir um exemplo de PG de razão 2 e primeiro termo 3:

(3, 6, 12, 24, …)
 

Observe que é sempre possível qualquer termo de uma PG em função do primeiro. Isso acontece porque o segundo termo é um produto do primeiro com a razão. O terceiro termo é um produto do segundo com a razão, que por sua vez é um produto do primeiro com a razão. Seguindo essa lógica, os termos dessa PG podem ser escritos da seguinte maneira:

a1 = 3

a2 = 6 = 3·2

a3 = 12 = 3·2·2

Não pare agora... Tem mais depois da publicidade ;)

a4 = 24 = 3·2·2·2

Observe também que cada termo da PG é igual a um produto do primeiro por uma potência da razão. O expoente dessa potência é sempre igual ao índice (posição do termo indicada por n) menos uma unidade. Assim:

a1 = 3 = 3·20

a2 = 6 = 3·21

a3 = 12 = 3·22

a4 = 24 = 3·23

Dessa maneira, fica fácil determinar, por exemplo, o décimo termo dessa PG. Basta multiplicar 3 pela razão elevada à nona potência:

a10 = 3·29

a10 = 3·512

a10 = 1536



Termo geral da PG

A ideia usada para encontrar o termo geral da PG é justamente a ideia usada para encontrar o décimo termo da PG do exemplo anterior. Para isso, utilizaremos a PG geral cujos elementos são:

(a1, a2, a3, a4, … an)
 

Do exemplo anterior, sabemos que cada termo dessa PG pode ser escrito em função de um produto entre o primeiro termo e uma potência:

a1 = a1·q0

a2 = a1·q1

a3 = a1·q2

a4 = a1·q3

Sabendo que o expoente da razão q sempre será igual ao índice do termo em questão menos 1, para encontrar a fórmula usada para determinar o enésimo termo (um termo qualquer, também chamado termo geral), basta fazer:

an = a1·qn – 1



Exemplo

Determine o décimo quinto termo da progressão geométrica a seguir: (1, 3, 9, 27, …)

Observe que a razão dessa PG é 3, pois cada termo é um produto do anterior por 3. Note também que o primeiro termo é 1, e como queremos descobrir o décimo quinto termo, n = 15. Dessa maneira, teremos:

an = a1·qn – 1

a15 = 1·315 – 1

a15 = 314

a15 = 4782969

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

É possível encontrar um termo qualquer de uma PA usando uma fórmula simples
Fórmula do termo geral de uma PA
Aprenda a calcular o termo geral de uma PA usando uma fórmula que exige apenas seu primeiro termo e a razão.
Praticando Progressões
Exemplos resolvidos sobre progressões.
Progressão geométrica
Reconheça uma progressão geométrica, aprenda as suas propriedades e classificação, entenda como encontrar o termo geral e como calcular a soma dos termos de uma PG.
As propriedades da multiplicação dos números inteiros são: comutativa, associativa, elemento neutro e distributiva
Propriedades da multiplicação dos números inteiros
Acesse para conhecer quais são as propriedades da multiplicação dos números inteiros!
Sequência de Fibonacci
Você já ouviu falar da sequência de Fibonacci? Não? Clique aqui e confira!
Sequências numéricas são números organizados em ordem.
Sequência numérica
Aprenda o que é uma sequência numérica. Entenda quando ocorrem as sequências crescente, decrescente, oscilante ou constante. Conheça a lei de formação da sequência.
A soma dos termos de uma PG infinita é dada por meio da fórmula, na qual dividimos o primeiro termo por 1 – q.
Soma dos termos de uma PG infinita
Clique e aprenda a calcular a soma dos termos de uma progressão geométrica (PG) infinita. Veja, por meio de exercícios resolvidos e comentados, como esse conteúdo pode ser cobrado em vestibulares e no Enem. Aprenda também a usar a fórmula do termo geral da PG para encontrar informações não explícitas em exercícios.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Inglês
Genitive Case
É hora de aperfeiçoar sua gramática na Língua Inglesa. Assista!
video icon
Videoaula Brasil Escola
Sociologia
Democracia racial
Você sabe o que significa democracia racial? Clique e nós te ensinamos!
video icon
Tigres Asiáticos
Geografia
Tigres Asiáticos
Assista à nossa videoaula sobre os Tigres Asiáticos, e conheça as razões do desenvolvimento rápido desses territórios.