Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Volume do Cubo

Volume do Cubo

O cubo é denominado hexaedro regular e é um dos cinco sólidos de Platão. Por ser considerado um sólido, possui volume.
Dizemos que volume é a quantidade de espaço ocupado por um corpo ou a capacidade de armazenamento que um corpo possui. O volume de um cubo depende da medida de sua aresta, consideramos apenas uma medida, pois o cubo possui todas as arestas de tamanhos iguais e seu volume é apresentado pela expressão V = a³, onde a corresponde à medida da aresta.

O volume de um cubo é determinado através do produto da área da base pela altura, como já foi dito que as arestas do cubo possuem medidas iguais, então temos que V = Ab * a ou V = a * a * aV = a³. Observe:

As unidades mais usadas para expressar capacidade são as seguintes: m³ (metro cúbico), cm³ (centímetro cúbico), dm³ (decímetro cúbico). Onde respeitam as seguintes relações:

1 m³ = 1000 litros
1 dm³ = 1 litro
1 cm³ = 1 mililitro ou 1 ml


De acordo com as seguintes relações, concluímos que:

Um cubo formado por arestas medindo 1 metro (m) cada, possui capacidade de 1000 litros, pois: V = 1m * 1m * 1m = 1m³.

Um cubo formado por arestas medindo 1 decímetro (dm) cada, possui capacidade de 1 litro, pois: V = 1dm * 1dm * 1dm = 1dm³ = 1 litro.

Um cubo formado por arestas medindo 1 centímetro (cm) cada, possui capacidade de 1 ml, pois: V = 1cm * 1cm * 1cm = 1cm³ = 1 ml.

Exemplo

Dado um cubo de 10 cm de aresta, determine quantas bolinhas de diâmetro igual a 1cm ele comporta.

Resolução:
De acordo com o que foi demonstrado, temos que o volume total do cubo corresponde a:
V = 10cm * 10cm * 10cm = 1000 cm³. Como a bolinha possui diâmetro medindo 1cm, podemos formar as arestas do cubo com 10 bolinhas enfileiradas. Observe:

Não pare agora... Tem mais depois da publicidade ;)

Portanto, o cubo com 10 cm de aresta comporta 1000 bolinhas com 1 cm de diâmetro.

Publicado por: Marcos Noé Pedro da Silva
Assuntos relacionados
Axiomas e Postulados
Ponto, Reta, Plano, Axiomas, Postulados, Dois pontos formam uma reta, Em um ponto passam infinitas retas, Cadeira tripé, Relação de pertinência, Relação de inclusão, Semi-reta
Classificação de triângulos
Classificação de triângulos: critérios e nomes
Você consegue contar quantos triângulos existem nessa imagem?
Congruência de Triângulos
O estudo de congruência de triângulos. Buscando formas para comparar os elementos do triângulo a fim de estudar a congruência destas figuras planas.
Cada tipo de sólido possui uma fórmula para o cálculo de seu volume
Fórmulas para Cálculo de Volume de sólidos
Aprenda fórmulas para calcular o volume de sólidos, tendo em vista sua forma e dimensões.
O princípio de Cavalieri é usado para demonstrar algumas fórmulas para volume de sólidos geométricos
Princípio de Cavalieri
Clique para saber mais sobre o Princípio de Cavalieri e como ele é usado para demonstrar algumas fórmulas para volumes de sólidos geométricos.
Teorema da Bissetriz Interna
Relações métricas num triângulo qualquer
Unidades de Medida de Volume
Conheça as unidades usuais de volume.
Unidades de Medida de Área
Confira quais são as unidades de medida de área e como convertê-las.
Volume do Paralelepípedo
O volume do paralelepípedo corresponde à multiplicação do comprimento pela largura e pela altura. Confira!
Os cubos são prismas, e os seus volumes são determinados pelo produto da área da base pela altura
Volume do prisma
Clique e aprenda a calcular o volume do prisma, compreenda quais princípios permitem esse cálculo e obtenha alguns exemplos resolvidos.
As pirâmides mais conhecidas são as de base quadrada
Área da Pirâmide
Clique para aprender a calcular a área da pirâmide e veja algumas fórmulas que podem ser usadas para cálculo da área da base e área lateral!