Whatsapp icon Whatsapp

Teorema da bissetriz interna

O teorema da bissetriz interna prova que ao traçar a bissetriz interna de um triângulo os segmentos que ela forma com o lado oposto é proporcional aos lados adjacentes.
O segmento de comprimento d é a bissetriz do triângulo.
O segmento de comprimento d é a bissetriz do triângulo.

O teorema da bissetriz interna é aplicado em triângulos. Por meio dele, é possível demonstrar que ao traçar qualquer uma das bissetrizes internas desse polígono, elas dividirão o lado oposto em segmentos de reta que são proporcionais a seus lados adjacentes.

A partir do teorema da bissetriz interna é possível encontrar valores desconhecidos em um triângulo. Existe também o teorema da bissetriz externa. Como o nome sugere, ele está relacionado ao ângulo externo do triângulo.

Leia também: Quais são os pontos notáveis de um triângulo?

Resumo sobre teorema da bissetriz interna

  • O teorema da bissetriz interna é aplicado em triângulos.

  • Ele mostra que a bissetriz de um ângulo interno do triângulo divide o lado em segmentos proporcionais aos lados adjacentes.

  • Existe também o teorema da bissetriz externa, que mostra proporções parecidas relacionadas à bissetriz do ângulo externo do triângulo.

Videoaula sobre teorema da bissetriz interna

Não pare agora... Tem mais depois da publicidade ;)

O que é uma bissetriz?

Para compreender o teorema, é importante compreender o que é a bissetriz, definida pela semirreta que divide um ângulo em duas partes congruentes.

 Bissetriz de um ângulo

Quando a bissetriz de um triângulo é delineada, a ideia é a mesma. A bissetriz de um ângulo interno do triângulo é um segmento de reta que divide aquele ao meio.

Bissetriz de um triângulo

Note que, além de dividir o ângulo ao meio, a bissetriz divide a base do triângulo em dois segmentos, AD e DB. O teorema abordado a seguir mostra uma relação de proporcionalidade entre os segmentos e os lados AC e BC.

Leia também: Segmentos proporcionais — aqueles que apresentam relações de proporcionalidade entre si

Como é o teorema da bissetriz interna?

O teorema da bissetriz interna mostra que se traçarmos a bissetriz AD em um triângulo de lados ABC, encontraremos dois segmentos. A razão entre o lado AC e o segmento CD é igual à razão entre o lado AB e o segmento BD.

Triângulo com segmentos proporcionais

Razões entre segmentos proporcionais de triângulo

Demonstração do teorema da bissetriz interna

Dado o triângulo ABC, com bissetriz AD, delimitaremos o prolongamento do lado AB e um segmento CE paralelo à bissetriz do triângulo, como na imagem abaixo:

Triângulo ABC com prolongamento do lado AB

Pelo teorema de Tales, sabemos que a reta transversal forma segmentos proporcionais, então temos o seguinte:

Razão entre segmentos proporcionais em triângulo

Sendo x o ângulo conhecido, qual o valor dos ângulos internos do triângulo AEC?

Demonstração de proporcionalidade em triângulo

A soma dos ângulos internos de um triângulo é sempre igual a 180°. Dessa forma, no triângulo ACE, calcula-se:

x + 180º – 2x + y = 180º

– x + y = 180° – 180°

– x + y = 0

y = x

Se o ângulo x e o ângulo y possuem a mesma medida, o triângulo ACE é isósceles. Logo, os segmentos AE e AC são congruentes. Trocando AE por AC na razão, fica provado que:

Razão entre segmentos proporcionais a partir do teorema da bissetriz interna

Exemplo:

Dado o triângulo a seguir, encontre o valor de x.

Triângulo para encontrar valor do lado x

Resolução:

Analisando a imagem, nota-se que basta aplicar o teorema da bissetriz interna nesse triângulo. Montando as proporções, temos que:

Razões proporcionais a partir do teorema da bissetriz interna de triângulo

Multiplicando de forma cruzada, calcula-se:

16x = 32 · 18

16x = 576

x = 576 : 16

x = 36

Diferença entre o teorema da bissetriz interna e o teorema da bissetriz externa

O teorema da bissetriz interna não é o único teorema envolvendo a bissetriz de um triângulo. Além dele, existe o teorema da bissetriz externa. Como o nome sugere, o teorema da bissetriz externa está ligado à bissetriz de um ângulo externo, diferentemente do teorema da bissetriz interna, que utiliza apenas os ângulos internos do triângulo.

Ambos os teoremas nos auxiliam a encontrar valores desconhecidos por meio da proporção. Assim, utilizamos o teorema que for mais conveniente de acordo com as informações já conhecidas.

Leia também: Congruência de triângulos — os casos em que eles apresentam medidas iguais

Exercícios resolvidos sobre teorema da bissetriz interna

Questão 1

Analisando o triângulo a seguir, podemos afirmar que o comprimento do lado AB é igual a

 Triângulo para encontrar valor do comprimento do lado AB

A) 15,0

B) 14,8

C) 13,5

D) 7,5

E) 6

Resolução:

Alternativa C

Sabemos que os segmentos são proporcionais. Portanto, montaremos a proporção e multiplicaremos de forma cruzada:

Cálculo do valor de x para encontrar valor de comprimento de lado de triângulo

Conhecendo o valor de x, sabemos que o lado AB é igual a 2x + 3x – 1,5. Dessa forma, obtém-se o seguinte:

AB = 2x + 3x – 1,5

AB = 5x – 1,5

Substituindo x = 3:

AB = 5 · 3 – 1,5

AB = 15 – 1,5

AB = 13,5

Questão 2

(CFTMG 2015) O perímetro do triângulo ABC vale 120 cm e a bissetriz do ângulo  divide o lado oposto em dois segmentos de 18 cm e 22 cm, conforme a figura.

Representação de triângulo com perímetro igual a 120 e bissetriz dividindo-o.

A medida do maior lado desse triângulo em centímetros é de:

A) 22

B) 36

C) 44

D) 52

Resolução:

Alternativa C

Sabemos que o perímetro do triângulo é de 120 cm, então:

c + b + 18 + 22 = 120

c + b = 120 – 40

c + b = 80

c = 80 – b

Pelo teorema da bissetriz interna, temos:

Cálculo do valor de b para encontrar valor de maior lado de triângulo

Analisando os lados, sabemos que b > c, pois:

c = 80 – b

c = 80 – 44

c = 36

Portanto, o maior lado desse triângulo mede 44 cm.

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Aplicação da relação entre volumes
Aplicando a relação entre volumes, um estudo para determinar relações entre as medidas que determinam esses volumes.
Aplicações do Teorema de Tales
Clique aqui e aprenda quando e como utilizar o Teorema de Tales!
As bissetrizes dos quadrantes
Geometria analítica, ponto, pares ordenados, abscissas, ordenadas, Coeficiente angular, bissetriz de um ângulo, bissetriz de um quadrante, quadrante par, quadrante ímpar, Bissetriz do quadrante par, bissetriz do quadrante ímpar.
Esfera
Corpo Esférico
Clique aqui e aprenda a calcular a área e o volume de um corpo esférico.
Cálculo Aproximado de Áreas
Áreas de formato irregular.
Identificando os pontos notáveis em um triângulo
Pontos Notáveis do Triângulo
Você sabe como identificar os pontos notáveis do triângulo? Aprenda a encontrar todos eles.
Retas paralelas cortadas por uma transversal
Retas paralelas cortadas por uma transversal
Conheça as retas paralelas cortadas por uma transversal e aprenda a calcular o valor dos ângulos nessa situação. Resolva também os exercícios propostos sobre o tema.
Teorema de Tales
Veja aqui o que o teorema de Tales afirma e entenda como aplicá-lo em um triângulo. Veja também exercícios que ilustram a sua aplicação.
Teorema que avalia os resultados de uma reta paralela a um lado de um triângulo
Teorema fundamental da semelhança
Clique para aprender sobre um caso interessante de semelhança de triângulos decorrente do teorema fundamental da semelhança.
Tetraedro regular
Elementos, área total e volume do tetraedro regular
Triângulo equilátero
Triângulo equilátero
Conheça o triângulo equilátero. Aprenda quais são suas propriedades. Veja a fórmula para calcular a área e a altura dessa figura.
Exemplos de triângulos equiláteros formados por outros três triângulos congruentes obtusângulos
Triângulos
Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.
Erros de cálculos, interpretação e montagem são os mais comuns na regra de três
Três erros cometidos na regra de três
Clique para ver os três erros mais cometidos na construção e resolução de uma regra de três e meios de evitá-los!
Unidades de Medida de Volume
Conheça as unidades usuais de volume.
A pirâmide é um sólido geométrico que pode apresentar diferentes formas de base.
Volume da pirâmide
Aprenda a calcular o volume da pirâmide. Conheça a fórmula para calcular o volume da pirâmide. Calcule o volume de pirâmides com diferentes bases.
Volume do Cubo
Capacidade do cubo em função da medida da aresta.
Ângulos notáveis são os mais usados na Trigonometria
Ângulos notáveis
Conheça os ângulos notáveis e descubra uma maneira de encontrá-los a partir da construção de triângulos.
video icon
Geografia
Regionalização do mundo
Assista à videoaula sobre regionalização do mundo e entenda como é possível classificar os países em conjuntos. Conheça os fatores considerados para as possíveis regionalizações mundiais e a importância disso para a geopolítica mundial.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas