Volume do prisma

O volume do prisma é determinado pelo produto da área da base pela altura e representa a quantidade de espaço que esse sólido geométrico ocupa.

Prisma é um sólido geométrico tridimensional formado por duas bases congruentes e paralelas e por quadriláteros que ligam essas bases, que são suas faces laterais. O volume dos prismas é definido com base no princípio de Cavalieri e é uma medida que se relaciona com a quantidade de espaço que esses sólidos geométricos ocupam. Para calcular o volume de prismas, é necessário conhecer a área de uma de suas bases (AB) e sua altura (h). A fórmula para o volume é:

V = Ab·h

O princípio de Cavalieri e o cálculo de áreas

O princípio de Cavalieri é uma das formas de mostrar que o volume de um prisma pode ser calculado pela fórmula acima. A ideia desse princípio é cortar os sólidos geométricos em fatias que não possuam profundidade. Depois, somam-se as áreas de cada uma dessas fatias para obter o volume do sólido geométrico que foi recortado.

Definindo o volume do cubo de aresta 1 como 1 cm3, podemos usar o princípio de Cavalieri para mostrar que a fórmula dada acima vale para todo prisma e para alguns corpos redondos.

Formalmente, esse princípio pode ser enunciado da seguinte maneira: se, em dois sólidos, todo plano secante e paralelo a um plano qualquer determina figuras geométricas de áreas iguais, os volumes dos dois sólidos são iguais.

A imagem acima exemplifica o princípio de Cavalieri. Observe que, se as áreas das figuras formadas em cada prisma pelo plano β forem iguais, os dois prismas apresentarão o mesmo volume.

Não pare agora... Tem mais depois da publicidade ;)

Exemplos

1º) Qual é o volume de um cubo de aresta 14 cm?

Para calcular esse volume, basta encontrar a área da base do cubo e depois multiplicar o resultado pela altura, que é igual à aresta. A área da base de um cubo é igual à área de um quadrado cujo lado é igual à aresta do cubo:

AB = l2 = 142 = 196

O volume é determinado por:

V = Ab·h

V = 196·14

V = 2744 cm3

2º) Um prisma de base retangular possui a base com as seguintes medidas: largura igual ao dobro do comprimento e diagonal igual a 36 cm. Sabendo que a altura desse prisma é de 15 cm, calcule seu volume.

Para descobrir a área da base, é necessário encontrar o valor de x para descobrir as dimensões dela. Como a base é um retângulo, podemos usar o teorema de Pitágoras.

362 = x2 + 2x2

362 = 3x2

1296 = x2
3       

x2 = 432

x = √432

x ≈ 21

As dimensões do retângulo, aproximadamente, são: x = 21 cm e 2x = 42 cm. O volume aproximado é:

V = Ab·h

V = 21·42·15

V = 13230 cm3

Os cubos são prismas, e os seus volumes são determinados pelo produto da área da base pela altura
Os cubos são prismas, e os seus volumes são determinados pelo produto da área da base pela altura
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

(PUC-SP) Na figura a seguir, tem-se o prisma reto ABCDEF, no qual DE = 6 cm, EF = 8 cm e DE é perpendicular a EF.

Prisma reto

Se o volume desse prisma é 120 cm3, a sua área total, em centímetros quadrados, é:

a) 144

b) 156

c) 160

d) 168

e) 172

Questão 2

(PUC-SP) Um tanque de uso industrial tem a aforma de um prisma cuja base é um trapézio isósceles. Na figura a seguir, são dadas as dimensões, em metros, do prisma:

Prisma cuja base é um trapézio

O volume desse tanque, em metros cúbicos, é:

a) 50

b) 60

c) 80

d) 100

e) 120

Mais Questões
Assuntos relacionados
Geometria espacial
Conheça tudo sobre geometria espacial clicando aqui! Aprenda os principais sólidos e as suas fórmulas para área total e volume.
Área do retângulo
Todo quadrado é um retângulo. Aprenda a calcular sua área de uma forma simples!
O Teorema de Pitágoras Aplicado no Estudo da Trigonometria
Cálculo da diagonal do quadrado e da altura do triângulo equilátero.
Posições relativas
As posições relativas correspondem a posições entre retas e planos no espaço. Saiba mais aqui!
                                  Hexaedro ou cubo
Hexaedro Regular
Confira aqui qual a formação de um hexaedro, aprenda também a calcular seu volume e área.
Pitágoras: Filósofo e Matemático
Teorema de Pitágoras: Altura e Área do Triângulo Equilátero
Importantes aplicações do Teorema de Pitágoras.
Unidades de Medida de Área
Confira quais são as unidades de medida de área e como convertê-las.
Volume do Cubo
Capacidade do cubo em função da medida da aresta.
Dados são hexaedros regulares (cubos)
Área do cubo
Clique para aprender a calcular a área do cubo, bem como sua área lateral e a área de suas bases.
O princípio de Cavalieri é usado para demonstrar algumas fórmulas para volume de sólidos geométricos
Princípio de Cavalieri
Clique para saber mais sobre o Princípio de Cavalieri e como ele é usado para demonstrar algumas fórmulas para volumes de sólidos geométricos.
Arestas de um cubo formadas por prismas vermelhos
Prisma
Aprenda o que é prisma, o modo como esse sólido geométrico é definido e algumas das classificações mais importantes que o envolvem.
Retângulo, paralelogramo e trapézio
Quadriláteros
Aprenda o que são quadriláteros e as características e propriedades que os definem como paralelogramos, trapézios ou nenhum dos dois.