Você está aqui
  1. Mundo Educação
  2. Química
  3. Química Geral
  4. Determinação da Geometria Molecular

Determinação da Geometria Molecular

Para realizar a determinação da geometria molecular, é preciso escrever a fórmula da molécula, descobrir qual é o átomo central e ver quantas nuvens eletrônicas existem.

Um dos modos mais utilizados teoricamente para realizar a determinação da geometria molecular, ou seja, para descobrir a forma com que os átomos estão dispostos espacialmente em uma molécula, é pela teoria da repulsão dos pares eletrônicos, também conhecida como teoria da repulsão dos pares de elétrons da camada de valência (RPECV).

Esse modelo considera as ligações covalentes que o átomo central realiza com os demais átomos como uma nuvem eletrônica. Cada par de elétrons disponível, ou seja, os elétrons do átomo central que não estão envolvidos em nenhuma ligação, também forma uma nuvem eletrônica. As nuvens eletrônicas repelem-se, pois são formadas de elétrons que possuem carga negativa (cargas iguais repelem-se). Desse modo, os átomos afastam-se e é definida a geometria da molécula.

Uma analogia bastante simples para visualizar a repulsão entre as nuvens eletrônicas é considerar cada nuvem como se fosse um balão:

Possibilidades de correspondência de uma nuvem eletrônica
Possibilidades de correspondência de uma nuvem eletrônica

Imagine dois ou mais balões amarrados e que o nó no centro representa o átomo central. Ao fazer isso, você perceberá que os balões se afastarão o máximo possível, porque é como se um empurrasse o outro. O mesmo ocorre com as nuvens eletrônicas dos átomos, que os afastam para que adquiram a disposição espacial mais estável.

Analogia com balões para entender o espaçamento das nuvens eletrônicas
Analogia com balões para entender o espaçamento das nuvens eletrônicas

Assim, para que você consiga determinar a geometria de uma molécula, basta fazer o seguinte:

  • Escreva a fórmula eletrônica de Lewis (mostrada no texto Ligação Covalente), na qual são escritos os símbolos dos elementos químicos e os elétrons da camada de valência ao seu redor (como “pontinhos”), e determine qual é o átomo central. Os pares de elétrons compartilhados e disponíveis devem ficar o mais distante possível uns dos outros;

  • Verifique quantas nuvens eletrônicas a molécula possui e, com isso, qual é a geometria da molécula.

Essa determinação não é realizada para moléculas diatômicas, ou seja, aquelas formadas somente por dois átomos (HCl, HBr, H2, O2, CO, etc), porque toda molécula diatômica é linear (ângulo de 180º). Veja o exemplo do HCl:

Geometria linear do HCl
Geometria linear do HCl

A geometria linear também ocorre no caso de moléculas que possuem três átomos e que o átomo central não possui  pares eletrônicos não compartilhado. É o caso do CS2. Vamos seguir os passos descritos para determinar a sua geometria.

1- Primeiro escrevemos a sua fórmula eletrônica de Lewis:

Fórmula eletrônica do CS2
Fórmula eletrônica do CS2

2- Agora vamos determinar a quantidade de nuvens eletrônicas. Observe o carbono, que é o átomo central. Ele possui duas ligações duplas, então ele apresenta somente duas nuvens eletrônicas, cuja distância máxima possível forma um ângulo de 180ºC. Portanto, sua geometria é linear.

Geometria linear do CS2
Geometria linear do CS2

Não pare agora... Tem mais depois da publicidade ;)

Mas existem casos de moléculas que possuem três átomos cuja geometria não é linear, mas sim angular. Isso acontece em moléculas que possuem um ou dois pares de elétrons desemparelhados. A água é um exemplo de molécula que possui geometria angular porque o átomo central (oxigênio) tem dois pares de elétrons não ligantes, conforme mostrado a seguir:

Geometria angular da água
Geometria angular da água

As moléculas em que o átomo central apresenta dois pares de elétrons desemparelhados e que possuem a geometria angular ficam com o ângulo de 109'28º. A água é uma exceção em razão, provavelmente, de o raio atômico do oxigênio ser pequeno, o que resulta em uma distância menor entre os hidrogênios.

A seguir há um exemplo de geometria angular para uma molécula formada por três átomos, o dióxido de enxofre, em que o átomo central (o enxofre) possui somente um par de elétrons desemparelhado. Nesse caso, o ângulo é de 120º.

Geometria angular para molécula com três átomos e um par de elétrons desemparelhado
Geometria angular para molécula com três átomos e um par de elétrons desemparelhado

Veja outros casos principais de geometria molecular:

* Geometria trigonal plana ou triangular: Ocorre no caso de moléculas formadas por quatro átomos, em que o átomo central não possui elétrons desemparelhados (não ligantes).

Exemplo: SO3 (trióxido de enxofre):

Geometria trigonal plana ou triangular para molécula com quatro átomos
Geometria trigonal plana ou triangular para molécula com quatro átomos

* Geometria piramidal (ou pirâmide trigonal): Ocorre no caso de moléculas formadas por quatro átomos, em que o átomo central possui um par de elétrons desemparelhado:

Exemplo: NH3 (Amônia):

Geometria piramidal ou pirâmide trigonal para molécula com quatro átomos e um par de elétrons desemparelhado
Geometria piramidal ou pirâmide trigonal para molécula com quatro átomos e um par de elétrons desemparelhado

* Geometria tetraédrica: Ocorre no caso de moléculas formadas por cinco átomos, em que um átomo é o central.

Exemplo: CH4 (Metano):

Geometria tetraédrica para molécula de metano
Geometria tetraédrica para molécula de metano

* Geometria bipirâmide trigonal (ou bipirâmide triangular): Ocorre no caso de moléculas formadas por seis átomos, em que um átomo é o central.

Exemplo: PCl5 (pentacloreto de fósforo):

Geometria bipirâmide trigonal ou bipirâmide triangular para molécula com seis átomos
Geometria bipirâmide trigonal ou bipirâmide triangular para molécula com seis átomos

* Geometria octaédrica: Ocorre no caso de moléculas formadas por sete átomos, em que um átomo é o central.

Exemplo: SF6 (hexafluoreto de enxofre):

Geometria octaédrica para molécula com sete átomos
Geometria octaédrica para molécula com sete átomos

A disposição espacial dos átomos em uma molécula é a geometria molecular
A disposição espacial dos átomos em uma molécula é a geometria molecular
Publicado por: Jennifer Rocha Vargas Fogaça
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

(Fac. Santa Marcelina-SP)

TEXTO: 1 - Comum à questão: 1

Dois médicos foram até a cantina do hospital para tomar café. Para adoçar seu café, um deles utilizou um envelope de açúcar orgânico e o outro um envelope de adoçante dietético, dissolvendo completamente os conteúdos em suas respectivas bebidas. A tabela apresenta algumas informações dos envelopes desses adoçantes:

(Quim. Nova, 2003. Adaptado.)

A estrutura de Lewis para a molécula de dióxido de silício, substância utilizada como antiumectante no adoçante dietético sucralose, é similar à estrutura de Lewis para a molécula de ________ que apresenta geometria molecular ________.

Assinale a alternativa que preenche, correta e respectivamente, as lacunas do texto.

a) CO2 – piramidal

b) CO2 – angular

c) SO2 – linear

d) SO2 – angular

e) CO2 – linear

Questão 2

(UCS) O hexafluoreto de enxofre (SF6) é um gás incolor, inodoro, não inflamável e inerte utilizado como isolante em transformadores de alta tensão elétrica e em equipamentos de distribuição de eletricidade. A respeito do SF6, é correto afirmar que:

a) apresenta geometria molecular octaédrica.

b) apresenta geometria molecular bipirâmide trigonal.

c) apresenta átomos de flúor e de enxofre unidos entre si por meio de ligações iônicas.

d) tem geometria molecular idêntica à da amônia (NH3).

e) é uma substância simples.

Mais Questões
Assuntos relacionados
Valores de eletronegatividade dos elementos da Tabela Periódica segundo Linus Pauling
Eletronegatividade
Conheça umas das propriedades periódicas mais importantes, a eletronegatividade.
A amônia é um exemplo de molécula polar
Polaridade das moléculas
Aprenda neste texto como é simples determinar a polaridade das moléculas por meio das nuvens eletrônicas ou da soma dos vetores momento dipolar.
Modelo atômico representando os componentes de um átomo de Nitrogênio
Nitrogênio
Clique e conheça tudo sobre o elemento Nitrogênio, bem como as formas em que ele pode ser encontrado na natureza.
O dióxido de carbono é uma substância cujas moléculas apresentam geometria linear
Geometria molecular linear
Clique e conheça a geometria molecular linear, que tipo de moléculas estão envolvidas e como devemos analisar uma substância que apresenta esse tipo de geometria.
O monóxido de dinitrogênio (N<sub>2</sub>O), que é um óxido neutro, pode ser utilizado como anestésico
Óxidos neutros
Conheça as principais particularidades dos óxidos neutros, classe com três representantes que não reagem com compostos ácidos e básicos.
A substância metano apresenta apenas ligações sigma entre os átomos.
Tipos de ligações sigma
Clique para aprender a determinar o tipo de ligação sigma existente entre os átomos presentes em uma molécula. Essa determinação é totalmente dependente do orbital (s, p ou hibridizado) incompleto existente em cada um dos átomos envolvidos nesse tipo de ligação. Retire todas as suas dúvidas sobre o assunto aqui!
O gás metano é uma substância cujas moléculas apresentam geometria tetraédrica.
Geometria tetraédrica
Clique aqui e amplie seus conhecimentos sobre geometria molecular conhecendo as principais características que determinam a geometria tetraédrica, a qual ocorre em moléculas pentatômicas cujo átomo central está ligado a quatro átomos iguais ou diferentes.
O dióxido de carbono é formado por ligações covalentes entre o carbono e dois átomos de oxigênio
Ligação Covalente
Entenda como ocorre a ligação covalente e como ela é representada por meio de fórmulas eletrônicas e estruturais.
As moléculas de água possuem geometria angular
Geometria Molecular
Saiba mais sobre o estudo da geometria molecular, sua importância e exemplos.
A água se expande a baixas temperaturas.
H20: molécula versátil
A água e suas propriedades únicas.
Ligação iônica e covalente: qual delas é polar?
Aprenda a classificar um composto de acordo com sua polaridade.
Força intermolecular, temperatura e solubilidade de moléculas
Como a interação entre moléculas torna um composto mais solúvel?
Representação da molécula de água em sua geometria molecular
Tipos de Geometria molecular
Clique e conheça as características dos principais tipos de geometria molecular existentes e aprenda a reconhecê-los nas mais diversas substâncias.
A polaridade das ligações pode ser vista por meio da distribuição espacial da sua nuvem eletrônica
Polaridade de Ligações Covalentes
A polaridade das ligações covalentes pode ser dos dois tipos: apolar e polar, depende apenas da eletronegatividade dos átomos envolvidos.
A grafita é uma exceção em relação aos outros compostos covalentes, quando se trata da propriedade de conduzir corrente elétrica
Características e Propriedades dos Compostos Covalentes
Conheça algumas das propriedades dos compostos covalentes ou moleculares, como estados físicos, pontos de fusão e ebulição, polaridade, condutividade, entre outras.
A ligação covalente pelo modelo de orbitais de Linus Pauling se dá pela interpenetração ou fusão dos orbitais desemparelhados
Ligação Covalente e o Modelo de Linus Pauling com os Orbitais
Entenda o que diz a teoria da ligação covalente por meio da interpenetração de orbitais atômicos e veja exemplos de sua aplicação.
O tipo de ligação química que forma os compostos é que determina suas propriedades
Ligações Químicas
Entenda por que os átomos reagem entre si, originando as ligações químicas. Veja também o que diferencia as principais ligações, que são: ligação iônica, covalente e metálica.
A ligação de formação do sal de cozinha é iônica polar
Polaridade das Ligações
Aprenda a identificar a polaridade das ligações iônicas e covalentes.
Glicerol é um exemplo de molécula orgânica polar
Moléculas orgânicas polares e apolares
Entenda o que determina se as moléculas orgânicas serão polares ou apolares e como isso influencia suas propriedades físicas e químicas.