Reações Reversíveis

As reações reversíveis são aquelas em que os reagentes são regenerados pela reação entre os produtos.

Muitas reações processam-se somente enquanto houver reagentes. Por exemplo, digamos que você coloque um comprimido antiácido na água, ele começa a reagir, gerando aquela efervescência que conhecemos bem. Sabemos também que essa reação irá cessar depois que todo o regente for consumido. Outro ponto é que não conseguimos regenerar o comprimido novamente. Portanto, esse tipo de reação é chamado de irreversível.

No entanto, existe um grande número de reações químicas importantes que ocorrem no metabolismo dos seres vivos e nas mais diversas regiões da Terra, como na atmosfera e hidrosfera, que são reversíveis. Antes de considerarmos um exemplo desse tipo de reação, vejamos primeiro o que é uma reação reversível e como ela é representada.

Considere uma reação genérica em que misturamos certa quantidade de um reagente A com um reagente B e eles transformam-se nos produtos C e D.

aA + bB → cC + dD

Em uma segunda transformação, a substância C é misturada à substância D e elas transformam-se nos produtos A e B:

cC + dD → aA + bB

Observe que os produtos da primeira reação são os reagentes da segunda reação e vice-versa. Assim, se essas duas reações ocorrerem ao mesmo tempo, em um único meio, dizemos que é um processo reversível.

Desse modo, concluímos que uma reação reversível é aquela que se desloca nos dois sentidos simultaneamente.

Temos que:

  • Reação direta: aA + bB → cC + dD
  • Reação inversa: cC + dD → aA + bB

Então podemos representar esse tipo de reação em uma única forma:

aA + bB ↔ cC + dD

A dupla seta (↔) é a indicação de que um processo é reversível, sendo que a seta para a direita (→) corresponde à reação direta, enquanto a seta voltada para a esquerda (←) corresponde à reação inversa. Se essas duas setas estiverem de tamanhos diferentes, isso quer dizer que a velocidade com que elas se processam está diferente, e quanto maior a seta, maior é a velocidade da reação. Por outro lado, se elas estiverem exatamente do mesmo tamanho, isso significará que o sistema atingiu o equilíbrio químico, em que a taxa de desenvolvimento da reação direta é igual à taxa de desenvolvimento da reação inversa.

Não pare agora... Tem mais depois da publicidade ;)

Representação de reação reversível e equilíbrio químico

Agora, consideremos um exemplo: as estalactites e estalagmites. As águas subterrâneas contêm dióxido de carbono (CO2) e estão a elevadas pressões, o que facilita a dissolução de carbonato de cálcio (CaCO3) quando elas passam por terrenos contendo calcário. Com isso, ocorre a seguinte reação:

CaCO3(s) + CO2(g)  + H2O(l)  Ca2+(aq) + 2 HCO-3(aq)

No teto das cavernas, essas águas começam a gotejar bem lentamente e, com o tempo, vão liberando dióxido de carbono e água por evaporação, ocorrendo a formação do carboneto de cálcio, que vai se depositando na forma de estalactites no teto e de estalagmites no solo:

Ca2+(aq) + 2 HCO-3(aq) CaCO3(s) + CO2(g)  + H2O(l)

Observe que uma reação é exatamente o inverso da outra, sendo que os reagentes foram regenerados. Portanto, temos a seguinte reação reversível:

CaCO3(s) + CO2(g)  + H2O(l)  Ca2+(aq) + 2 HCO-3(aq)

Estalactites e estalagmites são formadas por um processo reversível

A produção da amônia é feita pela reação entre os gases hidrogênio e nitrogênio. No entanto, a quantidade de amônia obtida experimentalmente é sempre menor que a proporção dada na equação química, ou seja, o rendimento não é 100%. Isso acontece porque uma parte da amônia produzida é decomposta, regenerando seus gases de origem. Assim, temos a seguinte reação reversível:

N2(g) + 3 H2(g) ↔ 2 NH3(g)

As reações reversíveis processam-se nos dois sentidos
As reações reversíveis processam-se nos dois sentidos
Publicado por: Jennifer Rocha Vargas Fogaça
Assuntos relacionados
Misturas
Saiba mais sobre o conceito de misturas e algumas curiosidades, os tipos e os principais processos de separação para cada um deles.
A formação de íons provenientes de suas próprias moléculas origina o equilíbrio iônico da água
Equilíbrio iônico da água
Entenda como é formado o equilíbrio iônico da água, qual é o seu produto iônico, como este varia com a temperatura, bem como sua relação com o pH.
Representação esquemática da primeira lei de Gay-Lussac
Leis de Gay-Lussac
Clique e conheça como são aplicadas as duas leis de Gay-Lussac, a lei da transformação isocórica e a lei das proporções volumétricas.
O quociente de equilíbrio pode ser calculado para vários experimentos a fim de determinar se a reação já atingiu o equilíbrio
Quociente de equilíbrio (Qc)
Entenda o que é o quociente de equilíbrio (Qc), como ele é calculado, qual a sua relação com a constante de equilíbrio e qual a sua aplicação.
Equações representando equilíbrios iônicos
Deslocamento em equilíbrios iônicos
Clique e conheça como ocorre o deslocamento em equilíbrios iônicos após a adição de íons comum ou reativos.
Efeito Tyndall
É a dispersão da luz pelas partículas coloidais. Neste caso, é possível visualizar o trajeto que a luz faz, pois estas partículas dispersam os raios luminosos.
A partir de uma reação do gás ozônio você poderá aprender a calcular a velocidade média de reações químicas
Cálculo da Velocidade Média de uma Reação
Aprenda a calcular a velocidade média de uma reação química em relação à variação da quantidade de reagentes ou de produtos e também a velocidade média global.
Calcular a velocidade instantânea e a velocidade média de reações químicas é importante principalmente nas indústrias químicas
Velocidade instantânea em uma reação química
Aprenda a calcular a velocidade instantânea, que corresponde à velocidade da reação num intervalo de tempo muito pequeno.
O princípio de funcionamento do catalisador ou conversor catalítico se baseia na catálise heterogênea
Catálise Heterogênea
Aprenda o conceito de catálise heterogênea e veja também exemplos de sua utilização em nosso cotidiano, incluindo as reações que ocorrem nos catalisadores automotivos.