Você está aqui
  1. Mundo Educação
  2. Física
  3. Mecânica
  4. Segunda Lei de Kepler

Segunda Lei de Kepler

A segunda lei de Kepler, também conhecida como a lei das áreas, afirma que a reta imaginária que liga um planeta até o Sol varre áreas iguais em intervalos de tempos iguais. De acordo com essa lei, a área percorrida pelo raio vetor que liga um planeta até o Sol durante um intervalo de tempo é constante e recebe o nome de velocidade areolar.

Veja também: Já ouviu falar sobre a “partícula de Deus”? Entenda o que são os bósons de Higgs

Introdução à segunda lei de Kepler

A segunda lei de Kepler decorre diretamente do princípio da conservação do momento angular. O momento angular é a quantidade de movimento relacionada aos corpos em rotação, como é o caso dos planetas que se movem em torno do Sol. O momento angular é uma grandeza vetorial, e o seu módulo depende diretamente do raio da órbita e da velocidade com que o corpo move-se. Dessa forma, se a distância entre o Sol e o planeta aumentar, sua velocidade deve deminuir e vice-versa.

A segunda lei de Kepler foi capaz de mostrar que, ao traçarmos uma reta que vai de um planeta até o Sol, a área varrida por essa reta ao longo da órbita será sempre igual para intervalos de tempos iguais, independentemente de qual seja a posição inicial do planeta. Isso acontece porque a área percorrida tem o formato de um arco cujo comprimento diz respeito à velocidade com que o planeta move-se, mas seus lados são determinados pelas distâncias inicial e final com relação ao Sol.

A razão com que uma área é percorrida pelo raio vetor que liga o planeta até o Sol para um determinado intervalo de tempo é conhecida como velocidade areolar, além disso, quando um planeta está em órbita do Sol, essa velocidade é sempre constante, confira:

Ω – velocidade areaolar (m²/s)

A – área (m²)

Δt – intervalo de tempo (s)

É importante notar que a velocidade areolar é diferente da velocidade orbital do planeta. Essa última muda de acordo com a distância entre o planeta e o Sol — nas proximidades do periélio, a velocidade orbital aumenta, e no afélio, diminui, graças às variações no módulo da atração gravitacional.

Não pare agora... Tem mais depois da publicidade ;)

Resumo de segunda lei de Kepler

De acordo com a segunda lei de Kepler:

  • A reta que liga um planeta até o Sol percorre áreas iguais em intervalos de tempos iguais.

  • A razão com que a área é percorrida pelo raio vetor é conhecida como velocidade areolar.

Veja também: Entenda o que são, como surgem e do que são feitas as estrelas

Exercícios resolvidos sobre a segunda lei de Kepler

Questão 1) (UFRGS) A elipse, na figura abaixo, representa a órbita de um planeta em torno de uma estrela S. Os pontos ao longo da elipse representam posições sucessivas do planeta, separadas por intervalos de tempos iguais. As regiões alternadamente coloridas representam as áreas varridas pelo raio da trajetória nesses intervalos de tempo. Na figura, em que as dimensões dos astros e o tamanho da órbita não estão em escala, o segmento de reta SH representa o raio focal do ponto H de comprimento p.

Considerando que a única força atuante no sistema estrela-planeta seja a força gravitacional, são feitas as seguintes afirmações:

I. As áreas S1 e S2, varridas pelo raio da trajetória, são iguais.

II. O período da órbita é proporcional a p3.

III. As velocidades tangenciais do planeta nos pontos A e H, VA e VH são tais que VA > VH.

Quais estão corretas?

a) Apenas I

b) Apenas I e II

c) Apenas I e III

d) Apenas II e III

e) I, II e III

Gabarito: Letra C

Resolução:

Vamos analisar as alternativas:

IVERDADEIRO

IIFALSO. O quadrado do período da órbita é proporcional ao cubo do raio médio, de acordo com a 3ª lei de Kepler.

IIIVERDADEIRO

Questão 2) (Acafe) Foi encontrado pelos astrônomos um exoplaneta (planeta que orbita uma estrela que não o Sol) com uma excentricidade muito maior que o normal. A excentricidade revela quão alongada é sua órbita em torno de sua estrela. No caso da Terra, a excentricidade é 0,017, muito menor que o valor 0,96 desse planeta, que foi chamado HD 20782.

Nas figuras a seguir, pode-se comparar as órbitas da Terra e do HD 20782.

Nesse sentido, assinale a alternativa correta:

a) As leis de Kepler não se aplicam ao HD 20782 porque sua órbita não é circular como a da Terra.

b) As leis de Newton para a gravitação não se aplicam ao HD 20782 porque sua órbita é muito excêntrica.

c) A força gravitacional entre o planeta HD 20782 e sua estrela é máxima quando ele está passando no afélio.

d) O planeta HD 20782 possui um movimento acelerado quando se movimenta do afélio para o periélio.

Gabarito: Letra D

Resolução:

No periélio, o planeta está na menor distância até o Sol, por isso, está sujeito à maior atração gravitacional que sua órbita permite, portanto, a resposta correta é a letra D.

Questão 3) (UFSM) Os avanços nas técnicas observacionais têm permitido aos astrônomos rastrear um número crescente de objetos celestes que orbitam o Sol. A figura mostra, em escala arbitrária, as órbitas da Terra e de um cometa (os tamanhos dos corpos não estão em escala). Com base na figura, analise as afirmações:

I. Dada a grande diferença entre as massas do Sol e do cometa, a atração gravitacional exercida pelo cometa sobre o Sol é muito menor que a atração exercida pelo Sol sobre o cometa.

II. O módulo da velocidade do cometa é constante em todos os pontos da órbita.

III. O período de translação do cometa é maior que um ano terrestre.

Está(ão) correta(s):

a) apenas I

b) apenas III

c) apenas I e II

d) apenas II e III

e) I, II e III

Gabarito: Letra B

Resolução:

Vamos analisar as alternativas:

I FALSA. De acordo com a terceira lei de Newton, essas forças devem ter intensidades iguais.

II FALSA. Nas trajetórias elípticas, o movimento é acelerado quando o astro aproxima-se do Sol.

IIIVERDADEIRA

Publicado por: Rafael Helerbrock
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

Calcule aproximadamente o período de rotação de um satélite artificial da Terra cujo raio da órbita é 2 vezes menor que o raio da órbita da Lua. Considere que o período de rotação da Lua ao redor da Terra é igual a 28 dias.

Questão 2

O modelo de universo proposto por Kepler, apesar de Heliocêntrico, tinha disparidades com o modelo de Copérnico. Marque a alternativa que contém tais disparidades.

a) No modelo de Copérnico as trajetórias dos planetas eram circulares, enquanto no de Kepler as trajetórias eram elípticas. Como sabemos hoje, as trajetórias dos planetas ao redor do sol são elípticas.

b) No modelo de Copérnico as trajetórias dos planetas eram elípticas, enquanto no de Kepler as trajetórias eram circulares. Como sabemos hoje, as trajetórias dos planetas ao redor do sol são elípticas.

c) Copérnico acreditava que o movimento no céu era circular e uniforme. A 3ª lei de Kepler nos mostra que o movimento dos planetas ao redor do Sol é variado.

d) Copérnico acreditava também, de forma errada, que o movimento no céu era circular e uniforme. A 2ª lei de Kepler nos mostra que o movimento dos planetas ao redor do centro da galáxia é variado.

e) N.D.A

Mais Questões
Assuntos relacionados
Hidrodinâmica
Clique aqui e conheça quais sãos os estudos da hidrodinâmica!
Hidrostática
Você sabe o que é hidrostática? Conheça os principais conceitos e fórmulas dessa área da Física, bem como confira exercícios resolvidos.
O êmbolo de uma seringa exerce sobre o fluido uma pressão que é transmitida a todos os pontos do líquido
Pressão em um ponto de um líquido
Determinando a pressão exercida em um ponto de um líquido.
A chave de rodas é utilizada para desapertar os parafusos da roda do carro
Vantagem mecânica
Veja aqui qual é a definição, em Física, de vantagem mecânica para uma ferramenta ou máquina.
A velocidade escalar média representada no diagrama horário da velocidade em função do tempo
Velocidade escalar média do MUV
Veja aqui como determinar a velocidade escalar média do movimento uniformemente variado através da média aritmética das velocidades escalares instantâneas.
Energia
Você sabe o que é energia? Conheça a definição de energia segundo a física. Confira quais são os diferentes tipos de energia. Entenda o que é a conservação da energia.
A pequena mancha negra na parte superior do Sol é Vênus passando na frente do disco solar
Trânsito de Vênus e Mercúrio
Saiba mais sobre o trânsito de Vênus e Mercúrio, fenômeno raro que ocorre quando esses planetas passam na frente do Sol!
Kepler enunciou três leis que determinaram o movimento dos planetas ao redor do Sol
Terceira lei de Kepler
Clique aqui e conheça a terceira lei de Kepler, denominada de lei dos períodos e que relaciona o tempo de translação com o raio médio da órbita dos planetas.
As leis de Kepler explicam os movimentos de translação dos planetas ao redor do Sol
Leis de Kepler
Conheça as leis de Kepler, postulados que determinam o “balé” dos planetas ao redor do Sol.
As três leis de Kepler explicam a forma como ocorre o “balé” dos planetas ao redor do Sol *
Johannes Kepler
Clique aqui para conhecer a história de vida de Johannes Kepler, um dos maiores nomes da Física e responsável por mudanças profundas na Astronomia.
Nessa ilustração, a Terra está ao lado do planeta Kepler 452-b, descoberto em 2015 por meio da sonda Kepler
Missão Kepler
Saiba tudo sobre a Missão Kepler, que tem por objetivo procurar planetas que tenham condições de abrigar vida!
A lua é o satélite natural da Terra
Satélites
Saiba mais sobre os satélites e as leis da Física que regem o seu movimento.
Leis do Movimento Planetário
Você sabe o que as leis do movimento planetário representam? Confira aqui!
O principal aspecto que se nota em Saturno é a formação dos anéis que o circundam
Planeta Saturno
Conheça o planeta Saturno e veja algumas das principais características de um dos mais curiosos planetas do sistema solar!
Os planetas considerados anões não possuem massa suficiente para serem considerados planetas
Planetas anões
Clique aqui e veja as características dos cinco planetas anões conhecidos em nosso Sistema Solar.