Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Função
  4. Cinco passos para construir o gráfico de uma função do 2º grau

Cinco passos para construir o gráfico de uma função do 2º grau

Com apenas cinco passos, é possível construir uma parábola, que é justamente o gráfico de uma função do 2º grau.

Funções do segundo grau são regras, baseadas em polinômios de grau 2 de uma variável, que relacionam cada elemento de um conjunto a um único elemento de outro. Assim como toda função, é possível construir sua representação gráfica no plano cartesiano. Toda equação do segundo grau possui como gráfico uma parábola.

As funções do segundo grau geralmente são apresentadas, em sua forma normal, da seguinte maneira:

y = ax2 + bx + c

Essa é a regra que relaciona os elementos “x” de um conjunto aos elementos “y” de outro. Dessa maneira, “x” é chamado de variável independente e “y” é chamado de variável dependente. Geralmente, tanto o primeiro conjunto, conhecido como domínio, quanto o segundo, denominado de contradomínio, são números reais ou algum subconjunto deles.

As parábolas são figuras geométricas planas e, por isso, devem ser construídas no plano cartesiano. Dessa maneira, é necessário encontrar de 3 a 5 pontos, utilizados para construir o “esqueleto” da parábola, antes de desenhá-la.

→ Primeiro passo: Calcular o valor de ∆

Para realizar o primeiro passo, basta separar os valores dos coeficientes “a”, “b” e “c”, substituí-los na fórmula do discriminante e realizar os cálculos. Essa fórmula é a seguinte:

∆ = b2 – 4ac

→ Segundo passo: Encontrar as coordenadas do vértice

O vértice de uma parábola é o seu ponto mais baixo ou o seu ponto mais alto, por isso, também é conhecido como ponto de máximo ou ponto de mínimo. Para calcular as coordenadas do vértice, substitua os valores numéricos dos coeficientes “a”, “b” e “c” nas seguintes fórmulas:

xv = – b  e yv = – ∆  
        2a             4a

O vértice será o ponto V = (xv, yv). Esse é o primeiro ponto que deve ser marcado no plano cartesiano para a construção do gráfico da função y = ax2 + bx + c.

→ Terceiro passo: Encontrar as raízes (quando possível)

Outros dois pontos que devem ser marcados no gráfico de uma função do segundo grau são as suas raízes, quando existirem.

Tendo em mãos o valor de ∆, utilize a fórmula de Bháskara para encontrá-las. Essa fórmula é a seguinte:

x = – b ± √∆
          2a

Sabendo que as raízes de uma função são os valores de x quando y = 0, os dois pontos obtidos no cálculo acima serão: A = (x', 0) e B = (x'', 0).

→ Quarto passo: Calcular pontos (quase) aleatórios

Para terminar de construir o esqueleto da função do segundo grau, é bom obter outros pontos para valores quaisquer de x.

Sugerimos a escolha de um ponto C à esquerda de xv e outro ponto E à direita. Para tanto, escolha um número qualquer menor que xv e calcule o valor de y referente a ele. Posteriormente, escolha um número qualquer maior que xv e calcule o valor de y referente a ele. Esse último passo é de extrema importância para funções que não possuem raízes.

→ Quinto passo: Desenhar o gráfico

Tendo em mãos os pontos A, B, C, D, E e V, marque-os no plano cartesiano e complete o desenho da parábola, tendo em mente as observações seguintes:

Observações importantes:

Não pare agora... Tem mais depois da publicidade ;)

1 – O valor do coeficiente “a” define a direção da concavidade da parábola, isto é, se a parábola estará voltada para cima ou para baixo. Para tanto, basta observar o seguinte:

Se a > 0, a parábola volta-se para cima e, por isso, possui um valor de mínimo.

Se a < 0, a parábola volta-se para baixo e, por isso, possui um valor de máximo.

2 – O valor do coeficiente “c” determina o ponto em que a parábola toca o eixo y. Para perceber isso, basta observar que, se x = 0, então:

y = ax2 + bx + c

y = a·02 + b·0 + c

y = c

Logo, o ponto encontrado é E = (0, c), que é justamente o ponto citado acima.

3 – Imagine uma reta que passa pelo vértice de uma parábola e é paralela ao eixo y. Essa reta é o eixo de simetria da parábola.

Exemplo:

Construa o gráfico da função do segundo grau: y = – x2 – x – 3.

Pelas observações anteriores, já sabemos que a parábola referente a essa função toca o eixo y no ponto E = (0, – 3) e que ela se volta para baixo.

Primeiro passo: O valor do discriminante

a = – 1, b = – 1 e c = – 3

∆ = b2 – 4ac

∆ = (– 1)2 – 4·(– 1)·(– 3)

∆ = 1 – 12

∆ = – 11

Como ∆ < 0, a função não possui raízes.

Segundo passo: As coordenadas do vértice

Utilizando as fórmulas dadas anteriormente, calcularemos as coordenadas do vértice:

xv = – b  
        2a

xv = – (– 1) 
        2(– 1) 

xv =
     –2

xv = – 1 
         2

 

yv = – ∆  
        4a

yv = – (– 11)
        4(– 1)

yv = 11 
      –4

yv = – 11 
          4

Portanto, o ponto V = (– 1  , – 11 )
                                 2        4

Como essa função não possui raízes, é preciso pular o terceiro passo.

Quarto passo: Escolheremos os valores -1 e 1 para “x” a fim de encontrar seus respectivos correspondentes “y”. Para tanto, basta substituir esses valores na função, um a um. Observe:

Se x = – 1, teremos:

y = – (– 1)2 – (– 1) – 3

y = – 1 + 1 – 3

y = – 3

Se x = 1, teremos:

y = – (1)2 – (1) – 3

y = – 1 – 1 – 3

y = – 5

Portanto, os dois pontos encontrados foram: C = (– 1, – 3) e D = (1, – 5).

 

Finalize marcando os pontos V, E, C e D no plano cartesiano e desenhando a parábola posteriormente.

Pontos C, D, E e V marcados no plano cartesiano e o gráfico da função y

Pontos C, D, E e V marcados no plano cartesiano e o gráfico da função y

 

O gráfico de funções do segundo grau é uma parábola
O gráfico de funções do segundo grau é uma parábola
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

Das alternativas abaixo, assinale a única que é correta a respeito da função f(x) = – 2(x + 1)(2 – x).

a) A função é do primeiro grau e é decrescente, pois a = – 2.

b) A função é do segundo grau e possui concavidade voltada para baixo, pois a = – 2.

c) A função é do segundo grau e possui concavidade voltada para cima, pois a = 2.

d) A função é do primeiro grau e é crescente, pois a = 2.

e) A função não é do primeiro nem do segundo grau.

Questão 2

A respeito da função f(x) = – 4x2 + 100, assinale a alternativa que seja o resultado da soma entre as coordenadas x e y do vértice.

a) 50

b) 100

c) 150

d) 200

e) 250

Mais Questões
Assuntos relacionados
O gráfico da função crescente está inclinado para cima, e o da função descrente está inclinado para baixo
Função crescente e decrescente
Clique para descobrir o que são funções crescentes, decrescentes e constantes, além de obter exemplos de cada uma delas.
No gráfico da função exponencial, todos os valores da função estão acima do eixo x
Propriedades da função exponencial
Clique e aprenda as propriedades da função exponencial que podem facilitar os cálculos envolvendo essas funções com expoente variável.
As principais diferenças entre função e equação referem-se especialmente a seus resultados
Diferenças entre função e equação
Descubra quais são as principais diferenças entre função e equação e entre variável e incógnita e saiba analisar os resultados em cada uma delas.
Parábolas relacionam-se com funções por meio dos coeficientes
Relação entre os coeficientes e o gráfico de uma função do segundo grau
Clique e aprenda a utilizar a relação entre os coeficientes e o gráfico de uma função do segundo grau para resolver alguns cálculos.
O discriminante de uma equação do segundo grau tem algumas funções na fórmula de Bháskara
Discriminante de uma equação do segundo grau
Clique e aprenda o que é o discriminante da equação do segundo grau e conheça alguns usos desse elemento da fórmula de Bháskara.
As parábolas são representações gráficas das funções do segundo grau
Concavidade da parábola
Clique e descubra o que é concavidade da parábola e entenda como é possível analisá-la a partir do coeficiente A da equação do segundo grau.
As parábolas são figuras cuja distância de um de seus pontos até o foco é igual à distância desse mesmo ponto até a diretriz
Parábolas
Clique e aprenda o que são parábolas para a Geometria Analítica, conheça seus elementos e saiba encontrar as equações reduzidas dessa figura.
O vértice é o ponto mais alto de uma parábola com concavidade voltada para baixo
Demonstração das fórmulas das coordenadas do vértice
Aprenda as fórmulas usadas para encontrar as coordenadas do vértice de uma parábola. Conheça também uma demonstração dessas fórmulas baseada nas raízes da função do segundo grau. Veja ainda um segundo método para determinar as coordenadas do vértice, que pode ser o ponto mais alto ou mais baixo de uma parábola.
Função do 2º Grau ou Função Quadrática
Que tal saber mais sobre a função do 2º grau? Aprenda a calcular a fórmula de Bhaskara e montar o gráfico da função. Confira exemplos e exercícios resolvidos.
Função do 1º grau
Você sabe qual a formação de uma função do 1º grau? Clique aqui e aprenda!
Gráfico: Função de 2º grau
Construção do gráfico de uma equação do 2º grau.
Pontos notáveis da parábola
Função do segundo grau, Função, Gráfico de função, parábola, concavidade, parábola para baixo, concavidade para cima, Construção de gráfico, coeficiente a positivo, Coeficiente a negativo, raízes de uma função, quantidade de raízes.
Coordenadas do Vértice de uma Parábola
Determinando o ponto de retorno da parábola relativa ao gráfico da função do 2º grau.
Gráfico de uma Função do 1º grau
Representação gráfica de uma função do 1º grau.
Pontos Notáveis da Parábola
Determinando o vértice da parábola.