Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Equação
  4. Demonstração da fórmula de Bhaskara

Demonstração da fórmula de Bhaskara

O método de completar quadrados pode ser usado para realizar a demonstração da fórmula de Bhaskara e também para resolver equações do segundo grau.

As equações do segundo grau podem ser resolvidas pela fórmula de Bhaskara, caso estejam escritas na seguinte forma:

ax2 + bx + c = 0

Para isso, basta substituir os valores dos coeficientes a, b e c na fórmula do discriminante e depois encontrar os valores de x dessa equação. A saber, o discriminante e a fórmula de Bhaskara são, respectivamente:

∆ = b2 – 4ac

e

x = – b ± √∆
    2a

O modo como essas duas fórmulas são demonstradas faz uso de um outro método de resolução de equações do segundo grau, conhecido como método de completar quadrados.

Antes de demonstrar as fórmulas acima, entretanto, convém relembrar alguns passos do método de completar quadrados.

Método de completar quadrados

As equações do segundo grau e os trinômios quadrados perfeitos (TQP) são muito parecidos. Portanto, é possível que qualquer equação do segundo grau seja parcialmente fatorada somando a ela a parcela que falta para que se torne um TQP. Essa parcela é sempre igual à metade do coeficiente b elevada ao quadrado. Exemplo:

x2 – 6x + 8 = 0

x2 – 6x = – 8

Observe que o coeficiente b = – 3 e que b2 = 9. Somando 9 em ambos os lados da equação, teremos um TQP do lado esquerdo, que pode ser fatorado no produto notável a seguir:

x2 – 6x + 9 = – 8 + 9

(x – 3)2 = 1

Para terminar essa solução, basta fazer a raiz quadrada em ambos os membros:

√[(x – 3)2] = √1

x – 3 = 1 ou x – 3 = – 1

x = 1 + 4 = 4 ou x = – 1 + 3 = 2

S = {2, 4}

Demonstração da fórmula de Bhaskara

Essa mesma estratégia será aplicada à forma geral da equação do segundo grau: ax2 + bx + c = 0. Para isso, em primeiro lugar, dividimos toda a equação pelo coeficiente a:

Não pare agora... Tem mais depois da publicidade ;)

ax2 + bx + c = 0
 a       a     a    a

x2 + bx + c = 0
        a     a     

x2 + bx = – c
        a        a

O segundo passo é dividir b/a por 2 e elevar o resultado ao quadrado para descobrir qual é o valor a ser somado nos dois lados da equação.

Somando esse resultado em ambos os lados da equação anterior, teremos:

Feito isso, sabemos que o primeiro membro é um trinômio quadrado perfeito que pode ser escrito na forma fatorada de produto notável. Assim, teremos:

Agora, é necessário somar as duas frações no segundo membro. Para isso, apenas multiplicaremos numerador e denominador da primeira fração por 4a. Isso fará com que os denominadores fiquem iguais e possibilitará a soma:

Em seguida, faça a raiz quadrada nos dois membros da equação.

Resolvendo as raízes, o resultado encontrado será:

Observe que o sinal ± aparece porque √(x2) = |x| = ± x. Prossiga passando b/2a para o segundo membro e some as frações de mesma base:

Essa expressão acima é exatamente a fórmula de Bhaskara com a fórmula do discriminante dentro da raiz. Portanto, podemos reorganizar os termos para b2 – 4ac, substituir esse valor pela letra grega ∆ e obter:

 Representação da fórmula de Bhaskara como é ensinada do ensino fundamental
Representação da fórmula de Bhaskara como é ensinada do ensino fundamental
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Lista de Exercícios

Questão 1

Um retângulo possui área igual a 60 m2. Sabendo que seus lados medem x + 3 e x – 2, qual das equações a seguir representa a relação entre as medidas de seus lados e a medida de sua área?

a) x + 1 = 60

b) x + 3 + x – 2 = 60

c) 2x2 – 6 = 60

d) x2 + x – 66 = 0

e) x2 + x = 54

Questão 2

Um polígono regular possui 170 diagonais. Quantos lados ele tem?

a) 15

b) 17

c) 20

d) 23

e) 25

Mais Questões
Assuntos relacionados
A fórmula de Bháskara é uma das formas que podem ser usadas para resolver equações do segundo grau
Equações incompletas do segundo grau com B = 0
Clique e aprenda duas formas distintas de resolver equações incompletas do segundo grau com b = 0 que podem agilizar e facilitar seus cálculos.
1º caso de fatoração: fator comum
Confira aqui qual é o 1º caso de fatoração de expressões algébricas e aprenda a resolvê-lo!
3º caso de fatoração: Trinômio do quadrado perfeito
Veja como fatorar expressões algébricas através da regra do trinômio do quadrado perfeito.
Equação biquadrada
Equação, equação do segundo grau, Equação biquadrada, Forma geral da equação biquadrada, Raízes da equação biquadrada, Incógnita, Substituição de incógnitas.
As equações do segundo grau podem ser resolvidas por Bháskara ou por formas alternativas
Equações incompletas do segundo grau
Clique para aprender o que são equações incompletas do segundo grau e conheça maneiras alternativas de resolvê-las.
Cubo da Soma
Clique aqui e aprenda a desenvolver a regra do cubo da soma.
Quadrado da Soma e Quadrado da Diferença
Regras práticas no desenvolvimento de produtos notáveis.
Equação do 2º Grau
Teorema de Bháskara: fórmula resolutiva de uma equação do 2º grau.
Cubo da Diferença
Clique aqui e aprenda a desenvolver a regra do cubo da diferença.
Resolver uma equação envolve boas ideias e atitude. Esse é o caso do método de completar quadrados
Método de completar quadrados
Clique para aprender a resolver equações do segundo grau utilizando produtos notáveis em um método chamado: completar quadrados!
As equações do segundo grau podem ser resolvidas por meio da fórmula de Bhaskara
Fórmula de Bhaskara
Clique para aprender a utilizar a fórmula de Bhaskara para encontrar raízes de equações do segundo grau!