Porcentagem

Porcentagem, representada pelo símbolo %, é a divisão de um número qualquer por 100. A expressão 25%, por exemplo, significa que 25 partes de um todo foram divididas em 100 partes.

Há três formas de representar uma porcentagem: forma percentual, forma fracionária e forma decimal. O cálculo do valor representado por uma porcentagem geralmente é feito a partir de uma multiplicação de frações ou de números decimais, por isso o domínio das quatro operações é fundamental para a compreensão de como calcular corretamente uma porcentagem.

Leia também: Quatro dicas para aprender Matemática

Representações de uma porcentagem

Símbolo conhecido como por cento.
Símbolo conhecido como por cento.
  • Forma percentual

A representação na forma percentual ocorre quando o número é seguido do símbolo % (por cento).

Exemplos:

5%

0,1%

150%

  • Forma fracionária

Para realização de cálculos, uma das formas possíveis de representação de uma porcentagem é a forma fracionária, que pode ser uma fração irredutível ou uma simples fração sobre o número 100.

Exemplo:

Não pare agora... Tem mais depois da publicidade ;)

  • Forma decimal

A forma decimal é uma possibilidade de representação também. Para encontrá-la, é necessária a realização da divisão.

Exemplo:

A forma decimal de 25% é obtida pela divisão de 25 : 100 = 0,25.

Macete

Lembrando que a nossa base é decimal, então, ao dividir por 100, basta andar com a vírgula duas casas para a esquerda.

Exemplos:

  • Forma percentual para a forma decimal:

30% = 0,30 = 0,3

5% = 0,05

152% = 1,52

Alguns exercícios pedem para fazermos o contrário, ou seja, transformar um número decimal em porcentagem. Para isso, basta andarmos com a vírgula duas casas para a direita (aumentando o número) e acrescentar o símbolo %.

  • Forma decimal para a forma percentual:

0,23 = 23%

0,111 = 11,1%

0,8 = 80%

1,74 = 174 %

Leia também: Divisão com números decimais

Como calcular uma porcentagem?

Os problemas que envolvem porcentagem são bastante recorrentes, portanto saber calculá-la é essencial. A estratégia de resolução depende do tipo de problema com o qual se está lidando. Veja algumas possibilidades:

Exemplo 1: Um plano de uma empresa de telefonia custava R$50,00, porém houve um aumento de 4%. Qual é o valor do aumento em reais? Qual é o novo valor da fatura?

Resolução por meio de multiplicação de frações:

Vamos encontrar o valor de referência, ou seja, o valor que corresponde a 100%. No caso, o valor de referência é R$ 50,00, que sofreu o aumento de 4%.

Calcularemos o valor do aumento a partir da forma fracionária, isto é, 4% de 50:

Lembrando que, na multiplicação de frações, multiplica-se numerador com numerador e denominador com denominador.

Então, o aumento será de R$ 2,00, e o novo valor da fatura será de R$ 52,00.

Exemplo 2: Suponha que um produto custava R$ 400,00 e teve um desconto de R$ 25,00. Qual foi o valor percentual de desconto?

Resolução: Temos como valor referente aos 100% os R$ 400,00. Logo, para calcular o desconto em porcentagem, basta calcular a razão do valor de desconto sobre o valor de referência.

Exemplo 3: Para a mudança de categoria na luta, um lutador precisava aumentar seu peso em 20%, atingindo um peso total de 76,8 kg. Qual é o peso atual do atleta?

Resolução:

Tendo em vista que o peso inicial do atleta corresponde a 100%, ele terá um aumento de 20%, logo, em comparação com o peso inicial do lutador, 80 kg corresponde a 120%.

Utilizando regra de três, temos que:

Peso(kg)

%

76,8

120

x

100

Como as grandezas são diretamente proporcionais (à medida que o peso aumenta, a porcentagem referente a ele também aumenta), vamos multiplicar cruzado:

Leia também: Três erros cometidos na regra de três

  • Cálculo de porcentagem de porcentagem

Exemplo: Calcule 15% de 38%.

Resolução: Para calcular porcentagem de porcentagem, utilizamos a multiplicação de duas frações ou a multiplicação de dois números decimais.

Forma fracionária:

Ou

Forma decimal: 0,15 ∙ 0.38 = 0.057 = 5,7%

Exercícios resolvidos

(Enem) Uma ponte precisa ser dimensionada de forma que possa ter três pontos de sustentação. Sabe-se que a carga máxima suportada pela ponte será de 12 t. O ponto de sustentação central receberá 60% da carga da ponte, e o restante da carga será distribuído igualmente entre os outros dois pontos de sustentação. No caso de carga máxima, as cargas recebidas pelos três pontos de sustentação serão, respectivamente:

a) 1,8 t; 8,4 t; 1,8 t.

b) 3,0 t; 6,0 t; 3,0 t.

c) 2,4 t; 7,2 t; 2,4 t.

d) 3,6 t; 4,8 t; 3,6 t.

e) 4,2 t; 3,6 t; 4,2 t

Resolução:

Tendo como valor de referência 12 toneladas, então queremos:

  • 60% de 12 = 0,6 ∙12 = 7,2 t para o ponto de sustentação central;
  • 12 – 7,2 = 4,8 t, que serão igualmente distribuídas;
  • 4,8 : 2 = 2,4.

Os pontos de sustentação receberão, respectivamente, 2,4 t; 7,2 t; 2,4 t (letra C). 

Publicado por: Raul Rodrigues de Oliveira
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

Em janeiro, Marta foi à feira e anotou o preço do que comprou:

  • Batata → R$ 4,99 o quilo;

  • Limão → R$ 3,49 o quilo;

  • Tomate → R$ 7,99 o quilo;

  • Cebolinha → R$ 1,00 o maço.

Dois meses depois, Marta anotou novamente o preço dos mesmos produtos da feira:

  • Batata → R$ 5,89 o quilo;

  • Limão → R$ 5,00 o quilo;

  • Tomate → R$ 8,90 o quilo;

  • Cebolinha → R$ 1,55 o maço.

Qual dos produtos comprados por Marta teve um maior aumento? E qual teve menor?

Questão 2

De acordo com a Receita Federal, para cada faixa salarial acima de R$ 1787,77 mensal, paga-se uma porcentagem referente ao imposto de renda. Confira a Tabela Progressiva para o cálculo mensal do imposto sobre a renda da pessoa dísica a partir do exercício de 2015, ano-calendário de 2014:

Disponível em: <Receita Federal>.
Acesso em 31 de outubro de 2014

Sabendo que Márcia ganha salário de R$ 2500,00 por mês, calcule quanto ela deverá pagar de imposto, tendo em vista que a alíquota é calculada sobre a diferença entre o salário e a faixa de isenção (R$ 1787,77).

Mais Questões
Assuntos relacionados
Saiba como funciona o Sistema Americano de Empréstimo
Sistema Americano de Empréstimo
Utilizando o sistema americano na quitação de empréstimos.
Inflação e o poder aquisitivo no capitalismo
Inflação: a desvalorização do poder de compra
Compreendendo como a inflação age no poder de compra de nosso dinheiro, gerando sua desvalorização. Inflação: a desvalorização do dinheiro.
Utilizamos o fator de multiplicação para fazer cálculos relacionados a aumentos e descontos
Fator de multiplicação da porcentagem
Você sabe calcular o fator de multiplicação da porcentagem? Acesse e aprenda!
Correção Salarial
Corrigindo rendimentos com base na inflação.
Resolvendo Proporções
Resolvendo proporções pela regra prática.
Financiamento de produtos: aquisição imediata
Financiamentos
No mercado atual, o financiamento é largamente utilizado. Clique e entenda!
Movimentações Financeiras
Clique aqui e entenda um pouco mais sobre o que é uma movimentação financeira!
Fator de Capitalização
Fator de correção das capitalizações compostas.
Indicadores inflacionários
Compreendendo quais são os indicadores inflacionários, como funcionam e como controlam o aumento abusivo dos preços das mercadorias. Estudo dos indicadores inflacionários e dos órgãos responsáveis por eles.