Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Função
  4. Função bijetora

Função bijetora

Funções bijetoras possuem contradomínio e imagem iguais e, além disso, elementos distintos do domínio relacionam-se com elementos distintos da imagem.

Também chamada de bijeção ou função bijetiva, uma função bijetora é aquela que é injetora e sobrejetora ao mesmo tempo. Por ser injetora, elementos distintos do domínio possuem imagens distintas no contradomínio. Dessa maneira, é correto afirmar que uma função bijetora apresenta a propriedade a seguir:

f ↔ (x' ≠ x'' → f(x') ≠ f(x'')), para todo x' e x'' pertencentes ao domínio de f.

Além disso, por serem sobrejetoras, as funções bijetoras devem possuir o contradomínio igual à imagem, isto é, para todo elemento do domínio, deve existir um elemento no contradomínio.

Em outras palavras, todo elemento pertencente ao domínio de uma função bijetora está relacionado com um único elemento de seu contradomínio. Além disso, não sobram elementos no contradomínio que não estão relacionados com elementos do domínio.

Nas funções bijetoras, portanto, não há que se falar em contradomínio. Podemos substituir essa palavra por “imagem” sempre, pois esses conjuntos são iguais.

Exemplos de função bijetora

1) y = x3, com x pertencente aos números reais.

Essa função é bijetora porque, qualquer que seja o elemento x, não existirão dois elementos distintos na imagem relacionados a ele e, além disso, a imagem é igual ao contradomínio.

2) y = x, com x pertencente aos números reais.

Observe que o domínio dessa função é o conjunto dos números reais. Perceba também que ela relaciona um número a ele mesmo. Por exemplo, se x = 1, y também é igual a 1. Dessa maneira, elementos diferentes no domínio possuem imagens diferentes no contradomínio. Além disso, o contradomínio é igual à imagem, pois ambos são o conjunto dos números reais. Sendo assim, essa função é bijetora.

Não pare agora... Tem mais depois da publicidade ;)

Exemplos de funções que não são bijetoras

1) y = x2, com domínio e contradomínio definidos nos números reais.

Observe, em primeiro lugar, que valores distintos do domínio nem sempre possuem imagens distintas. Observe os valores 2 e – 2 nessa função:

f(x) = x2

f(2) = 22

f(2) = 4

f(– 2) = (– 2)2

f(– 2) = 4

Ambos os valores do domínio estão relacionados com o mesmo representante da imagem. Dessa maneira, a função não é injetora. Além disso, nem todo o contradomínio é utilizado nessa função. Para perceber isso, observe que nenhum valor do domínio, ou seja, atribuído a x, tem como resultado um número negativo. Sendo assim, a função não é sobrejetora.

2) y = 2x, com domínio e contradomínio definidos nos números naturais.

Essa função relaciona números naturais a números pares. Observe que números naturais distintos possuem resultados pares também distintos, logo, a função é injetora. Entretanto, perceba que nem todos os elementos do contradomínio estão relacionados a elementos do domínio. Sendo assim, o contradomínio e a imagem são conjuntos distintos e, por isso, a função não é sobrejetora.

Logo, y = 2x não é bijetora.

Gráfico de uma função: uma das formas de representá-la
Gráfico de uma função: uma das formas de representá-la
Publicado por: Luiz Paulo Moreira Silva
Assista às nossas videoaulas
Assuntos relacionados
No gráfico da função exponencial, todos os valores da função estão acima do eixo x
Propriedades da função exponencial
Clique e aprenda as propriedades da função exponencial que podem facilitar os cálculos envolvendo essas funções com expoente variável.
Símbolos usados para representar alguns conjuntos numéricos
O que são conjuntos numéricos?
Descubra o que são conjuntos numéricos e saiba quais são os elementos dos conjuntos dos naturais, inteiros, racionais, irracionais, reais e complexos.
Conjunto dos Naturais
Conjuntos Numéricos, Conjunto dos naturais, Representação dos conjuntos dos números naturais, Naturais não-nulos, Conjunto infinito, conjunto finito, Sucessor e Antecessor.
Relação
Relação, Conjunto, Relação entre conjuntos, Representação de conjunto, Representação de relação, Regra, Diagrama, Par ordenado, Domínio, Imagem, Gráfico de uma relação.
Função do 1º grau
Você sabe qual a formação de uma função do 1º grau? Clique aqui e aprenda!
Função par e função ímpar
Definição de função, Diagrama de função, Gráfico de função, Função par, Função ímpar, Tipo de função, Conjunto, Elemento de um conjunto, Plano cartesiano, Gráfico cartesiano.
Gráfico de uma Função do 1º grau
Representação gráfica de uma função do 1º grau.
Domínio, Contradomínio e Imagem de uma Função
Conhecendo o domínio, o contradomínio e a imagem de uma função.
Máximo e mínimo absolutos da função quadrática
Como determinar o ponto de máximo ou mínimo de uma função do 2º grau
Função injetora
Definição de uma função injetora. Compreendendo a definição de uma função injetora e sua aplicabilidade.
Função sobrejetora
Definindo a função sobrejetora através da análise dos elementos do contradomínio. Compreendendo as propriedades que definem a função sobrejetora.