Whatsapp icon Whatsapp

Planificação de sólidos geométricos

A planificação de sólidos geométricos é uma maneira de representar esses sólidos tridimensionais em um plano que é um objeto bidimensional.
Sólidos geométricos mais comuns na Geometria
Sólidos geométricos mais comuns na Geometria

A planificação de sólidos geométricos é uma forma de apresentar esses sólidos usando apenas um plano, ou seja, é uma forma de representar um objeto tridimensional em apenas duas dimensões. Para tanto, basta construir cada superfície externa do sólido do modo como essa figura seria no plano, respeitando suas medidas.

Todo sólido geométrico é formado por, pelo menos, uma superfície. Quando essa superfície é plana e poligonal, ela é chamada de face; quando ela é curva, é preciso imaginar como seria se ela fosse “esticada”. A superfície curva do cilindro, por exemplo, pode ser compreendida como um paralelogramo que foi enrolado.

Planificação de pirâmides

Observe, na imagem a seguir, uma pirâmide de base pentagonal.

Lembre-se de que uma pirâmide é formada por uma base poligonal – que pode ser qualquer polígono – e por faces laterais triangulares. Assim, fica fácil concluir que a planificação da pirâmide apresenta um polígono e alguns triângulos.

Observe que o número de triângulos sempre será igual ao número de lados do polígono da base. A planificação de uma pirâmide pentagonal, por exemplo, é composta por cinco triângulos e por um pentágono, como mostra a imagem a seguir:

Dito isso, a planificação de uma pirâmide de base triangular é composta por quatro triângulos: uma da base e três das faces laterais.

A planificação de uma pirâmide cuja base é um quadrilátero é composta por um quadrilátero e quatro triângulos, que também não são necessariamente congruentes.

Resumindo: o número de triângulos da planificação de uma pirâmide é igual ao número de lados da base.

Vale dizer que os triângulos não precisam ser congruentes, pois existem casos de pirâmides oblíquas.


Planificação dos prismas

Observe, na imagem a seguir, um prisma de base pentagonal.

Não pare agora... Tem mais depois da publicidade ;)

O prisma é um sólido geométrico formado por duas bases poligonais congruentes e por faces laterais que são paralelogramos.

O número de paralelogramos presentes na planificação do prisma é igual ao número de lados de uma de suas bases. Além disso, na planificação, aparecerão dois polígonos congruentes, que são as bases. A figura a seguir mostra a planificação de um prisma de base pentagonal:

Como o número de paralelogramos é igual ao número de lados da base do prisma, um prisma de base octogonal possui oito paralelogramos em sua planificação. Esses paralelogramos não necessariamente são congruentes, apenas nos casos em que o prisma é reto.


Planificação dos cones

Observe na imagem a seguir um cone:

O cone é um sólido formado por uma base circular e por uma superfície curva, como mostra a figura anterior. A planificação do cone apresenta um setor circular e um círculo, como mostra a figura a seguir:


Planificação dos cilindros

A figura a seguir mostra um exemplo de cilindro.

O cilindro é um sólido formado por duas bases circulares congruentes e por uma superfície curva, como mostra a figura anterior. Essa figura pode ser compreendida como um retângulo ou um paralelogramo que foi “enrolado”.

A figura a seguir mostra a planificação de um cilindro.

Obs.: Todas as planificações apresentadas buscavam mostrar um exemplo de como a planificação pode ser apresentada. Vale dizer que a posição dessas figuras pode variar de acordo com o problema, intenção do autor etc.

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Cilindro
Clique aqui e saiba tudo sobre o cilindro: seus elementos, sua classificação, suas fórmulas e muito mais!
Cone
Entenda o que é um cone, conheça a sua planificação e suas classificações, além de aprender a calcular a área total e o volume desse sólido geométrico.
Círculo
Clique aqui para saber o que é o círculo, quais são os seus principais elementos e fórmulas. Entenda a diferença entre círculo e circunferência.
Dimensões do espaço
Clique e aprenda o que são as dimensões do espaço e como os objetos, figuras e sólidos geométricos comportam-se diante delas.
O que é plano?
Clique e aprenda o que é um plano, os postulados que garantem sua existência e como construí-los.
Paralelogramos
Clique e descubra o que são paralelogramos e como eles são classificados em quadrados, losangos e retângulos.
Pirâmide
Clique aqui, aprenda o que é pirâmide, conheça seus diferentes tipos e calcule seu volume e sua área utilizando as fórmulas específicas para esses cálculos.
Polígonos
Aprenda o que são polígonos, descubra algumas das propriedades dessas figuras e entenda a diferença entre polígonos convexos e regulares.
Prisma
Clique aqui, entenda o que é um prisma, conheça seus tipos e descubra quais são as fórmulas que podem ser utilizadas para calcular suas áreas e seu volume.
Sólidos geométricos
Clique para aprender o que são sólidos geométricos, seus tipos e para obter alguns exemplos desses objetos.
Triângulos
Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.
video icon
Texto"Matemática do Zero | Teorema de Pitágoras" em fundo azul.
Matemática do Zero
Matemática do Zero | Teorema de Pitágoras
Nessa aula veremos que o teorema de Pitágoras está relacionado a um triângulo retângulo. Nesta figura, temos o lado oposto ao ângulo de 90º, chamado hipotenusa, e os outros dois lados são catetos. O Teorema de Pitágoras afirma que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.