Whatsapp icon Whatsapp

Propriedades dos determinantes

As propriedades dos determinantes ajudam a simplificar os cálculos e até mesmo dispensam o processo algébrico utilizado para encontrar o determinante.
As propriedades podem facilitar o cálculo dos determinantes e até dispensar as contas em algumas situações.
As propriedades podem facilitar o cálculo dos determinantes e até dispensar as contas em algumas situações.

Existem várias técnicas utilizadas para calcular o determinante de uma matriz, entre elas estão: Regra de Sarrus, Teorema de Laplace, Teorema de Jacobi, Teorema de Binet e a Regra de Chió. Mas todas essas técnicas podem ser facilitadas se aplicarmos as propriedades dos determinantes. Vale lembrar que os determinantes, bem como suas propriedades, são aplicados apenas em matrizes quadradas. Vejamos cada uma dessas propriedades:

1ª) Se uma matriz possuir uma linha ou uma coluna nula, seu determinante será zero.

Essa propriedade é válida porque cada termo no cálculo do determinante será multiplicado por zero, resultando em um determinante nulo. Vejamos um exemplo para uma matriz de ordem 3:


Matriz de ordem 3 com a segunda coluna composta por zeros.

Calculando o determinante dessa matriz pela Regra de Sarrus, temos:

Det = A11·0·A33 + 0·A23·A31 + A13·A21·0 – A31·0·A13 – 0·A23·A11 – A33·A21·0 = 0

Podemos ainda verificar essa propriedade através de qualquer matriz que apresente uma linha ou coluna formada por zeros.

2ª) O determinante de uma matriz será sempre igual ao determinante de sua transposta.

É fácil verificar essa propriedade, pois, ao calcular o determinante de uma matriz A ou de sua transposta At, estaremos sempre realizando as mesmas multiplicações e as mesmas adições. Vejamos o cálculo do determinante das matrizes A e At de ordem 2:


Matriz de ordem 2 e sua transposta.

Vamos calcular o determinante das duas matrizes:

Det A = A11·A22 – A21·A12

Det At = A11·A22 – A12·A21

Det A = Det At

3ª) Se trocarmos as duas linhas ou as duas colunas da matriz, trocaremos o sinal do determinante.

Essa propriedade recebe também o nome de Teorema de Bézout e pode ser facilmente comprovada através de exemplos. Veja:


Matrizes A e A', ambas de ordem 2.

Observe que a Matriz A' é uma cópia da A, mas as linhas 1 e 2 foram trocadas. Vejamos o cálculo de seus determinantes:

Det A = A11·A22 – A21·A12

Det A' = A21·A12 – A11·A22

Det A = – Det A'

4ª) Se multiplicarmos os elementos de uma linha ou de uma coluna da matriz por um valor n qualquer, o determinante também será multiplicado por n.

Não pare agora... Tem mais depois da publicidade ;)

A 4ª propriedade é válida porque, no cálculo do determinante, cada produto é multiplicado por n, o que, colocando em evidência, corresponde a multiplicar o próprio determinante por n. Vejamos um exemplo para uma matriz de ordem 3:

Matrizes A e A', ambas de ordem 3.

Vamos calcular o determinante dessa matriz pela Regra de Sarrus:

5ª) Se uma matriz possui duas linhas ou colunas iguais ou múltiplas uma da outra, o determinante é nulo.

Vamos verificar essa propriedade através de exemplos:


Matrizes de ordem 2: A e B.

Veja que a matriz A apresenta duas linhas iguais. Vamos calcular seu determinante:

Det A = A11·A12 – A11·A12

Det A = 0

Podemos ver ainda que a segunda coluna da matriz B é múltipla da primeira coluna. Calcularemos seu determinante:

Det B = B11·nB21 – B21·nB11

Det B = n(B11·B21 – B21·B11)

Det B = n·0

Det B = 0

6ª) Se somarmos uma linha ou coluna à outra que foi multiplicada por um número, o determinante não será alterado.

Para demonstração dessa propriedade, é mais indicado o uso de exemplo numérico. Observe que a matriz A' (mostrada a seguir) é decorrente da matriz A. Mas para chegar à terceira coluna da matriz A', nós somamos o tripo da 2ª coluna de A à 3ª coluna de A, obtendo:


Matrizes de ordem 2: A e B.

Vamos calcular o determinante de A e de A':

Det A = 1·3·2 + 2·1·4 + 0·2·0 – 4·3·0 – 0·1·1 – 2·2·2 = 6

Det A' = 1·3·2 + 2·10·4 + 6·2·0 – 4·3·6 – 0·10·1 – 2·2·2 = 6

Det A = Det A'

7ª) O determinante do produto de duas matrizes é igual ao produto de seus determinantes.

Vejamos a demonstração dessa propriedade através de um exemplo:


Matrizes A e B e matriz A.B.

Vamos calcular o determinante de A e de B:

Det A = A11·A22 – A21·A12

Det B = B11·B22 – B21·B12

Det A·Det B= A11·A22·B11·B22 – A21·A12·B11·B22 – A11·A22·B21·B12 + A21·A12·B21·B12

Calculando o determinante da matriz A·B, temos:

Det (A·B) = A11·A22·B11·B22 – A21·A12·B11·B22 – A11·A22·B21·B12 + A21·A12·B21·B12

Portanto, Det A · Det B = Det (A·B).

Publicado por Amanda Gonçalves Ribeiro
Assista às nossas videoaulas

Artigos Relacionados

Cofator de uma matriz
O cálculo do cofator de uma matriz qualquer auxilia no cálculo do determinante através do teorema de Laplace.
Determinante de uma matriz quadrada de ordem n
Calculando o determinante de uma matriz utilizando Sarrus.
Determinantes de matrizes de ordem 1, 2 e 3
Saiba o que é um determinante e aprenda como calcular determinantes de matrizes de ordem 1, 2 e 3. Veja exemplos e resolva exercícios do tema.
Matriz
Você sabe o que é matriz? Clique aqui, aprenda a realizar soma, subtração e multiplicação de matrizes e veja também os casos particulares existentes.
Matriz quadrada
Clique aqui, entenda o que é matriz quadrada, identifique suas diagonais principal e secundária e aprenda como calcular seu determinante.
Regra de Chió nos cálculos dos determinantes
Como calcular determinantes de matrizes com ordem superior a três, utilizando a regra de Chió.
Regra de Sarrus
Conheça a regra de Sarrus. Aprenda a calcular o determinante de uma matriz de ordem 2 e de ordem 3 por essa regra. Entenda como ela funciona.
Teorema de Binet
A importância do Teorema de Binet para o cálculo de determinantes de matrizes- produto.
Teorema de Jacobi
Estudo do determinante de matrizes através do teorema de Jacobi. Compreendendo o teorema de Jacobi para o cálculo do determinante.
video icon
Texto" Matemática do Zero | Polígonos regulares e irregulares" em fundo azul.
Matemática do Zero
Matemática do Zero | Polígonos regulares e irregulares
Nessa aula veremos o que é um polígono, nomenclaruta de um polígono e como classificá-lo em regular e irregular.