Whatsapp icon Whatsapp

Quatro passos para resolver equações do primeiro grau

Para facilitar seu aprendizado, apresentamos quatro passos para resolver equações do primeiro grau.
Equações: expressões que contêm números conhecidos, números desconhecidos e uma igualdade
Equações: expressões que contêm números conhecidos, números desconhecidos e uma igualdade

Neste texto ensinaremos um método para resolver equações do primeiro grau em quatro passos. Antes de apresentarmos o passo a passo, é importante abordarmos algumas definições básicas das equações.
 

  • Definições básicas das equações

Toda equação possui igualdade e incógnita. A incógnita é um número desconhecido representado por uma letra (geralmente x). Resolver uma equação é encontrar o valor de x que torna essa igualdade verdadeira.

Dada uma equação do primeiro grau qualquer, o conjunto de números, incógnitas e operações disposto à esquerda da igualdade é conhecido como primeiro membro da equação; e o que está à direita da igualdade é chamado de segundo membro da equação. Por exemplo, dada a equação:

7x + 80 = 4x – 7

O primeiro membro é composto por 7x + 80, e o segundo membro, por 4x – 7. Além disso, cada parcela que é somada ou subtraída em uma equação é chamada de termo. Logo, tomando o mesmo exemplo acima, os termos dessa equação são: 7x, 80, 4x e 7.

De posse dessas definições, seguem os quatro passos para resolver uma equação do primeiro grau.
 

  • Os quatro passos da resolução de equações do primeiro grau

Passo 1 – Colocar no primeiro membro todos os termos que possuem incógnita.

Reescreva a equação colocando todos os termos que possuem incógnita no primeiro membro. Para tanto, utilize a seguinte regra: Trocou de membro, trocou de sinal. Observe o exemplo:

7x + 80 = 4x – 7

O termo 4x está no segundo membro e deve ser colocado no primeiro. Assim, troque 4x de membro trocando também seu sinal:

7x + 80 = 4x – 7

7x – 4x + 80 = – 7

Passo 2 – Colocar no segundo membro todos os termos que não possuem incógnita.

Repita o procedimento do passo anterior para transferir termos que não possuem incógnita do primeiro para o segundo membro. No exemplo abaixo (continuação do exemplo anterior), observe que + 80 é um termo que não possui incógnita. Portanto, deve ser colocado no segundo membro. Ao fazer isso, lembre-se da regra: Trocou de membro, trocou de sinal.

Não pare agora... Tem mais depois da publicidade ;)

7x – 4x + 80 = – 7

7x – 4x = – 7 – 80

Passo 3 – Simplificar as expressões em cada membro.

Para esse passo, basta realizar as operações indicadas na equação. Para tanto, lembre-se de como devem ser realizadas as somas de números inteiros.

7x – 4x = – 7 – 80

3x = – 87

Passo 4 – Isolar a incógnita no primeiro membro.

Em alguns casos, como no exemplo acima, a incógnita aparece sendo multiplicada (ou dividida) por um número qualquer. Para isolar a incógnita no primeiro membro da equação, deve-se considerar a seguinte regra: Caso o número esteja multiplicando a incógnita, passá-lo para o segundo membro dividindo. Caso o número esteja dividindo a incógnita, passá-lo para o segundo membro multiplicando. Por exemplo:

3x = – 87

Observe que a incógnita x está sendo multiplicada por 3. Portanto, 3 deve passar para o segundo membro dividindo. Logo, o quarto passo terá o seguinte resultado:

3x = – 87

x = – 87
      3

x = – 29

Exemplo:

Qual é o valor de x da equação seguinte?

2x + 9 = 4x – 18
4            4       

Primeiro passo:

2x4x + 9 = – 18
 4      4                 

Segundo passo:

2x4x = – 18 – 9
  4     4                  

Terceiro passo (Clique aqui para saber como somar frações):

2x = – 27
   4           

Quarto passo: deve ser feito duas vezes, uma para o 4 que está dividindo e outra para o 2 que está multiplicando.

2x = – 27
4       

– 2x = – 27·4

– 2x = – 108

x = – 108
        – 2

x = 54

Lembre-se de que o resultado é positivo em virtude do jogo de sinais.

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Equação de 1º grau com duas incógnitas
Clique aqui e saiba como determinar os valores das equações do 1º grau com duas incógnitas.
Equação do 1° grau
Clique aqui e descubra o que é uma equação do 1° grau. Aprenda como resolvê-la. Confira exercícios resolvidos sobre o tema.
Equação do 1° grau
Clique aqui e descubra o que é uma equação do 1° grau. Aprenda como resolvê-la. Confira exercícios resolvidos sobre o tema.
Equação do 2º grau
Aprenda a resolver uma equação do 2º grau e a diferenciar uma equação do 2º grau completa de uma incompleta. Confira ainda exercícios sobre o tema.
Equação do 2º grau
Aprenda a resolver uma equação do 2º grau e a diferenciar uma equação do 2º grau completa de uma incompleta. Confira ainda exercícios sobre o tema.
Equação geral da reta
Conheça a equação geral da reta e aprenda a representá-la graficamente. Confira ainda exercícios resolvidos sobre o assunto.
História das Equações
Clique aqui e confira um pouco sobre a história das equações!
História das Equações
Clique aqui e confira um pouco sobre a história das equações!
video icon
Professor ao lado do texto"Como fazer o detalhamento na proposta de intervenção da redação do Enem?"
Enem
Como fazer o detalhamento na proposta de intervenção da redação do Enem?
A proposta de intervenção na redação do Enem é composta por quatro elementos obrigatórios, sendo que, se houver mais de um problema na discussão do tema, é necessário fazer duas ou mais propostas contendo esses elementos. E o detalhamento? Como fazer o detalhamento da proposta de intervenção?

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.