Arredondamento

Arredondamento é o nome dado ao processo de dispensa de casas decimais desnecessárias em números decimais.
Pi: número irracional que geralmente é arredondado para 3,14

Arredondamento é o nome dado à dispensa de casas decimais em um número decimal. Esse procedimento geralmente é feito quando as casas dispensadas não possuem grande relevância no resultado, como acontece quando a conta de um restaurante é R$ 100,00 exatos a serem divididos para três amigos. O resultado dessa divisão é uma dízima periódica: R$ 33,3333...

A questão é que não faz sentido pagar 0,3333 centavos, então, arredondamos o resultado dessa divisão para R$ 33,33.

Esse valor foi arredondado para a segunda casa decimal, pois preservamos os dois primeiros algarismos após a vírgula. Para fazer esse arredondamento, descartamos todas as casas decimais e observamos a terceira, que é a mais próxima da segunda e a única que tem alguma relevância para arredondá-la. Para escolher se o algarismo na segunda casa decimal deve ser mantido ou acrescido em uma unidade, observamos os critérios a seguir:

Critérios para arredondamento

Existem critérios claros para que esses arredondamentos sejam feitos da maneira correta. Esses critérios são definidos pela fundação IBGE, em sua resolução nº 886/66, e estão listados a seguir:

  • Ao arredondar um número para que ele tenha determinada quantidade de casas decimais, observamos a primeira casa decimal a ser descartada. Ela é chamada de casa de condição;

  •  Se o algarismo na casa de condição for < 5, a última casa decimal do número arredondado permanecerá inalterada; 

Vejamos o exemplo da divisão de R$ 100,00 por três citada acima, que precisou ser arredondada para a segunda casa decimal. Como o algarismo na casa de condição era 3 < 5, a última casa decimal do número arredondado permaneceu inalterada.

Vamos considerar outro exemplo: ao arredondar 3,4742 para a terceira casa decimal, podemos notar que a casa de condição está ocupada pelo número 2 < 5. Logo, o número arredondado é 3,474 e, assim, o algarismo 4 permanece inalterado.

  • Se o algarismo na casa de condição for > 5, aumentaremos uma unidade na última casa decimal. Ao arredondar 47,886 para a segunda casa decimal, notamos que 6 > 5; assim, o resultado do arredondamento é 47,89;

  • Se o algarismo na casa de condição for 5, aumentaremos uma unidade na última casa decimal, a não ser que esse 5 seja o último algarismo do número ou seja seguido apenas por zeros. Nesse caso, ao arredondar 2,7450001, por exemplo, para a segunda casa decimal, temos 2,75 como resultado. Ao arredondar 2,745000 para a segunda casa decimal, temos 2,74 como resultado. 

Publicado por Luiz Paulo Moreira Silva
História
Grécia Antiga: Os Cretenses
Assista à nossa videoaula para conhecer a história dos cretenses. Confira também, no nosso canal, outras informações sobre a Grécia Antiga.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos