Whatsapp icon Whatsapp

Baricentro de um triângulo

Baricentro do triângulo é um dos pontos notáveis do triângulo. É conhecido também como centro de gravidade do triângulo e é o encontro das medianas.
Baricentro do triângulo ABC.
Baricentro do triângulo ABC.

Conhecemos como baricentro do triângulo o centro de gravidade do triângulo. O baricentro é um dos pontos notáveis do triângulo, o ponto de encontro quando traçamos as suas três medianas. Ao traçar a mediana de cada um dos vértices do triângulo, o baricentro é o ponto de encontro das três medianas.

Quando conhecemos as coordenadas de cada um dos vértices de um triângulo representado no plano cartesiano, para calcular o seu baricentro, basta calcular a média aritmética dos valores de x e dos valores de y.

Leia também: Quais são as propriedades do triângulo equilátero?

Resumo sobre baricentro de um triângulo

  • O baricentro de um triângulo é o ponto de encontro das três medianas do triângulo.

  • O baricentro é conhecido também como centro de gravidade do triângulo.

  • O baricentro divide qualquer uma das medianas na razão 1 para 2.

  • Para calcular a posição do baricentro de um triângulo no plano cartesiano, utilizamos a fórmula:

Fórmula para calcular a posição do baricentro no plano cartesiano.

Não pare agora... Tem mais depois da publicidade ;)

O que é o baricentro?

No estudo dos triângulos, existem os pontos conhecidos como notáveis, os pontos específicos de um triângulo, são eles:

  • o baricentro

  • o incentro

  • o circuncentro

  • o ortocentro

Cada um possui propriedades específicas e é encontrado de maneira diferente. O baricentro, em específico, é o ponto de encontro das medianas do triângulo. Todo triângulo possui três medianas, e mediana é o segmento que liga o vértice ao ponto médio do lado oposto, como na imagem a seguir:

Indicações das medianas de cada lado de um triângulo ABC separadamente.
Medianas dos lados do triângulo ABC.Legenda

Quando traçamos as três medianas do triângulo simultaneamente, é possível encontrar o ponto de encontro delas, denotado por G, o baricentro do triângulo:

 Medianas de um triângulo traçadas simultaneamente a fim de apresentar o ponto G, o baricentro.
O ponto G é o baricentro do triângulo, o ponto de encontro das medianas.
  • Videoaula sobre os pontos notáveis de um triângulo

Propriedades do baricentro

  • Propriedade 1

Dada qualquer uma das medianas do triângulo, o baricentro divide-a em dois novos segmentos cujos comprimentos estão em razão 1 para 2.

Triângulo com as medianas traçadas a fim de mostrar que o baricentro divide cada uma delas em razão 1 para 2.

  • Propriedade 2

Em todo triângulo, o baricentro é um ponto interno.

Como as medianas são segmentos que ligam de forma interna o vértice ao ponto médio do lado oposto, ou seja, são sempre segmentos internos do triângulo, consequentemente, o baricentro é um ponto interno do triângulo.

Passo a passo de como se calcula o baricentro

No estudo da geometria analítica, quando representamos o triângulo ABC, no plano cartesiano, em que os vértices possuem coordenadas A(xA, yA), B(xB, yB) e C(xC, yC) e o seu baricentro, G(xG, yG), para calcular as coordenadas do baricentro, basta fazer a média aritmética entre os valores de x para os vértices A, B e C e os valores de y para os mesmos vértices.

Representação de um triângulo no plano cartesiano e suas medianas e seu baricentro, e a fórmula para encontrar o ponto G.

Exemplo:

Um triângulo foi representado no plano cartesiano, sendo que os seus vértices são os pontos A (-1, -2), B (3, 5) e C (4, -3), calcule a coordenada do baricentro desse triângulo.

Para encontrar o baricentro desse triângulo, vamos calcular a soma das abscissas dos pontos A, B e C e dividir por três:

Exemplo de cálculo com a fórmula para encontrar a abscissa do baricentro no plano cartesiano.

Faremos o mesmo processo com os valores da ordenada:

Exemplo de cálculo com a fórmula para encontrar a ordenada do baricentro no plano cartesiano.

Então, o par ordenado que representa a localização do baricentro desse triângulo é o ponto G(2, 0).

Veja também: Como podemos classificar um triângulo?

Exercícios resolvidos sobre o baricentro de um triângulo

Questão 1 - (Seduc – CE) O baricentro de uma área plana é o ponto no qual está localizado o centro de gravidade da área considerada. Na matemática, define-se o baricentro de uma área limitada por um triângulo como sendo o ponto de interseção das medianas do triângulo. Se no plano cartesiano os pontos (1, 6) e (3, 2) são vértices de um triângulo cujo baricentro é o ponto (5/3, 3), então, o terceiro vértice desse triângulo é o ponto:

A) (2/3, 1)

B) (1, 1)

C) (1, 4/3)

D) (2/3, 4/3)

E (1, 2/3)

Resolução

Alternativa B

Nomeando os vértices do triângulo de A, B e C, seja A(1,6) e B (3,2), como não conhecemos as coordenadas do terceiro vértice, faremos sua representação por C(x,y).

Sabemos que o baricentro é o ponto (5/3, 3). Substituindo na fórmula os valores dos pontos A, B e do baricentro, temos que:

Resolução de questão de cálculo com a fórmula para encontrar a abscissa do baricentro no plano cartesiano.

Agora, encontraremos o valor de y:

Resolução de questão de cálculo com a fórmula para encontrar a ordenada do baricentro no plano cartesiano.

Então, as coordenadas do ponto C são (1, 1).

Questão 2 - As coordenadas do baricentro do triângulo a seguir são:

Enunciado de questão contendo um triângulo em um plano cartesiano com as coordenadas de cada vértice.

A) (3, 2)

B) (2, 3)

C) (-2, 3)

D) (6, 4)

E) (-4, -6)

Resolução

Alternativa B

Identificando as coordenadas de cada um dos pontos, temos que A(-1, 3), B(1, 2) e C(6, 4).

Agora, calcularemos o baricentro:

Resolução de questão calculando as coordenadas do baricentro de um triângulo em um plano cartesiano.

As coordenadas do ponto G são (2, 3).

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Condição de Alinhamento de Três Pontos
Verificando a condição de alinhamento de três pontos.
Congruência de triângulos
Entenda o que são os triângulos congruentes. Identifique cada um dos casos de congruência do triângulo. Use a congruência para encontrar valores desconhecidos.
Hipérbole
Entenda o que é hipérbole e conheça suas principais propriedades. Aprenda sua equação geral e sua equação reduzida.
Pontos notáveis de um triângulo
Clique aqui e entenda o que são os pontos notáveis de um triângulo. Saiba quais são eles e descubra como diferenciá-los.
Retas perpendiculares
Clique aqui para entender o que são retas perpendiculares. Saiba como identificar duas retas perpendiculares a partir de suas equações reduzidas.
Semelhança de triângulos
Entenda o que é semelhança entre triângulos e o teorema fundamental da semelhança de triângulos. Veja também os casos de semelhança de triângulos e como aplicá-los.
Triângulo equilátero
Conheça o triângulo equilátero. Aprenda quais são suas propriedades. Veja a fórmula para calcular a área e a altura dessa figura.
Triângulos
Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.
Ângulo formado entre duas retas
Como determinar a medida do ângulo entre duas retas