Whatsapp icon Whatsapp

Baricentro de um triângulo

Baricentro do triângulo é um dos pontos notáveis do triângulo. É conhecido também como centro de gravidade do triângulo e é o encontro das medianas.
Baricentro do triângulo ABC.
Baricentro do triângulo ABC.

Conhecemos como baricentro do triângulo o centro de gravidade do triângulo. O baricentro é um dos pontos notáveis do triângulo, o ponto de encontro quando traçamos as suas três medianas. Ao traçar a mediana de cada um dos vértices do triângulo, o baricentro é o ponto de encontro das três medianas.

Quando conhecemos as coordenadas de cada um dos vértices de um triângulo representado no plano cartesiano, para calcular o seu baricentro, basta calcular a média aritmética dos valores de x e dos valores de y.

Leia também: Quais são as propriedades do triângulo equilátero?

Resumo sobre baricentro de um triângulo

  • O baricentro de um triângulo é o ponto de encontro das três medianas do triângulo.

  • O baricentro é conhecido também como centro de gravidade do triângulo.

  • O baricentro divide qualquer uma das medianas na razão 1 para 2.

  • Para calcular a posição do baricentro de um triângulo no plano cartesiano, utilizamos a fórmula:

Fórmula para calcular a posição do baricentro no plano cartesiano.

Não pare agora... Tem mais depois da publicidade ;)

O que é o baricentro?

No estudo dos triângulos, existem os pontos conhecidos como notáveis, os pontos específicos de um triângulo, são eles:

  • o baricentro

  • o incentro

  • o circuncentro

  • o ortocentro

Cada um possui propriedades específicas e é encontrado de maneira diferente. O baricentro, em específico, é o ponto de encontro das medianas do triângulo. Todo triângulo possui três medianas, e mediana é o segmento que liga o vértice ao ponto médio do lado oposto, como na imagem a seguir:

Indicações das medianas de cada lado de um triângulo ABC separadamente.
Medianas dos lados do triângulo ABC.Legenda

Quando traçamos as três medianas do triângulo simultaneamente, é possível encontrar o ponto de encontro delas, denotado por G, o baricentro do triângulo:

 Medianas de um triângulo traçadas simultaneamente a fim de apresentar o ponto G, o baricentro.
O ponto G é o baricentro do triângulo, o ponto de encontro das medianas.
  • Videoaula sobre os pontos notáveis de um triângulo

Propriedades do baricentro

  • Propriedade 1

Dada qualquer uma das medianas do triângulo, o baricentro divide-a em dois novos segmentos cujos comprimentos estão em razão 1 para 2.

Triângulo com as medianas traçadas a fim de mostrar que o baricentro divide cada uma delas em razão 1 para 2.

  • Propriedade 2

Em todo triângulo, o baricentro é um ponto interno.

Como as medianas são segmentos que ligam de forma interna o vértice ao ponto médio do lado oposto, ou seja, são sempre segmentos internos do triângulo, consequentemente, o baricentro é um ponto interno do triângulo.

Passo a passo de como se calcula o baricentro

No estudo da geometria analítica, quando representamos o triângulo ABC, no plano cartesiano, em que os vértices possuem coordenadas A(xA, yA), B(xB, yB) e C(xC, yC) e o seu baricentro, G(xG, yG), para calcular as coordenadas do baricentro, basta fazer a média aritmética entre os valores de x para os vértices A, B e C e os valores de y para os mesmos vértices.

Representação de um triângulo no plano cartesiano e suas medianas e seu baricentro, e a fórmula para encontrar o ponto G.

Exemplo:

Um triângulo foi representado no plano cartesiano, sendo que os seus vértices são os pontos A (-1, -2), B (3, 5) e C (4, -3), calcule a coordenada do baricentro desse triângulo.

Para encontrar o baricentro desse triângulo, vamos calcular a soma das abscissas dos pontos A, B e C e dividir por três:

Exemplo de cálculo com a fórmula para encontrar a abscissa do baricentro no plano cartesiano.

Faremos o mesmo processo com os valores da ordenada:

Exemplo de cálculo com a fórmula para encontrar a ordenada do baricentro no plano cartesiano.

Então, o par ordenado que representa a localização do baricentro desse triângulo é o ponto G(2, 0).

Veja também: Como podemos classificar um triângulo?

Exercícios resolvidos sobre o baricentro de um triângulo

Questão 1 - (Seduc – CE) O baricentro de uma área plana é o ponto no qual está localizado o centro de gravidade da área considerada. Na matemática, define-se o baricentro de uma área limitada por um triângulo como sendo o ponto de interseção das medianas do triângulo. Se no plano cartesiano os pontos (1, 6) e (3, 2) são vértices de um triângulo cujo baricentro é o ponto (5/3, 3), então, o terceiro vértice desse triângulo é o ponto:

A) (2/3, 1)

B) (1, 1)

C) (1, 4/3)

D) (2/3, 4/3)

E (1, 2/3)

Resolução

Alternativa B

Nomeando os vértices do triângulo de A, B e C, seja A(1,6) e B (3,2), como não conhecemos as coordenadas do terceiro vértice, faremos sua representação por C(x,y).

Sabemos que o baricentro é o ponto (5/3, 3). Substituindo na fórmula os valores dos pontos A, B e do baricentro, temos que:

Resolução de questão de cálculo com a fórmula para encontrar a abscissa do baricentro no plano cartesiano.

Agora, encontraremos o valor de y:

Resolução de questão de cálculo com a fórmula para encontrar a ordenada do baricentro no plano cartesiano.

Então, as coordenadas do ponto C são (1, 1).

Questão 2 - As coordenadas do baricentro do triângulo a seguir são:

Enunciado de questão contendo um triângulo em um plano cartesiano com as coordenadas de cada vértice.

A) (3, 2)

B) (2, 3)

C) (-2, 3)

D) (6, 4)

E) (-4, -6)

Resolução

Alternativa B

Identificando as coordenadas de cada um dos pontos, temos que A(-1, 3), B(1, 2) e C(6, 4).

Agora, calcularemos o baricentro:

Resolução de questão calculando as coordenadas do baricentro de um triângulo em um plano cartesiano.

As coordenadas do ponto G são (2, 3).

Publicado por Raul Rodrigues de Oliveira

Artigos Relacionados

Condição de Alinhamento de Três Pontos
Verificando a condição de alinhamento de três pontos.
O triângulo ABC é congruente ao triângulo A1B1C1.
Congruência de triângulos
Entenda o que são os triângulos congruentes. Identifique cada um dos casos de congruência do triângulo. Use a congruência para encontrar valores desconhecidos.
A distância entre dois pontos diz respeito ao segmento de reta que liga dois pontos em um plano cartesiano.
Distância entre dois pontos
Entenda qual é o segmento que representa a distância entre dois pontos no plano cartesiano e conheça sua fórmula para calcular essa distância.
Podemos encontrar a equação geral da reta representada no plano cartesiano.
Equação geral da reta
Conheça a equação geral da reta e aprenda a representá-la graficamente. Confira ainda exercícios resolvidos sobre o assunto.
A hipérbole é classificada como cônica por ser obtida a partir de uma determinada secção do cone.
Hipérbole
Entenda o que é hipérbole e conheça suas principais propriedades. Aprenda sua equação geral e sua equação reduzida.
Inclinação e coeficiente angular de uma reta
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo
Identificando os pontos notáveis em um triângulo
Pontos Notáveis do Triângulo
Você sabe como identificar os pontos notáveis do triângulo? Aprenda a encontrar todos eles.
Retas perpendiculares
coeficiente angular, Retas perpendiculares, coeficiente angular de retas perpendiculares, condição de existência de retas perpendiculares, tangente, ângulo de inclinação.
Semelhança de triângulos
Entenda o que é semelhança entre triângulos e o teorema fundamental da semelhança de triângulos. Veja também os casos de semelhança de triângulos e como aplicá-los.
Triângulo equilátero
Triângulo equilátero
Conheça o triângulo equilátero. Aprenda quais são suas propriedades. Veja a fórmula para calcular a área e a altura dessa figura.
Exemplos de triângulos equiláteros formados por outros três triângulos congruentes obtusângulos
Triângulos
Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.
Ângulo formado entre duas retas
Como determinar a medida do ângulo entre duas retas
video icon
Química
Funções orgânicas: Cetona
Cetonas são compostos caracterizados pela presença do grupo funcional carbonila, que deve estar entre carbonos para que possa caracterizar a função cetona. São utilizadas como solventes de tinta, esmaltes e vernizes e podem ser bastante inflamáveis.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas