Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Trigonometria
  4. Demonstração da lei dos senos

Demonstração da lei dos senos

A demonstração da lei dos senos é feita com base em trigonometria básica e envolve a construção de uma das alturas de um triângulo qualquer.

A trigonometria básica relaciona as medidas de lados de triângulos retângulos às medidas de seus ângulos, por meio das razões seno, cosseno e tangente. Quando o triângulo não é retângulo, existem outros dois teoremas que possibilitam relacionar as medidas de seus lados e ângulos. São eles: a lei dos senos e a lei dos cossenos.

Por meio desses teoremas, é possível descobrir a medida de um dos lados de um triângulo conhecendo as medidas de outros de seus lados e ângulos. A seguir, veremos a lei dos senos e a sua demonstração.

Lei dos senos

Dado um triângulo ABC ilustrado na figura a seguir:

A lei dos senos é a seguinte proporção:

     a     =      b     =     c      
Senα      Senβ        Senθ

Como se trata de uma proporção, deveremos usar apenas uma das igualdades, que é escolhida de acordo com os lados e ângulos disponíveis no triângulo. Para descobrir a medida de um dos lados do triângulo utilizando a lei dos senos, será necessário conhecer as medidas do outro lado e do ângulo oposto a ele, como também do ângulo oposto ao lado cuja medida será descoberta.

Note que o ângulo α é oposto ao lado a, e ambos estão na mesma fração. O mesmo é válido para todos os outros ângulos e lados.

Não pare agora... Tem mais depois da publicidade ;)

Demonstração da lei dos senos

Para demonstrar essa propriedade, observe a construção da altura desse triângulo, relativa à base AC.

A medida da base AC é igual a b. Observe que a altura BD corta o lado AC em duas partes não necessariamente iguais. Entretanto, uma altura sempre forma um ângulo de 90° com a base do triângulo. Sendo assim, temos dois triângulos retângulos na figura: o triângulo ABD e o triângulo BCD.

Calculando o seno do ângulo α, relativo ao triângulo ABD, teremos:

Senα = BD
             c

Assim, o lado BD mede:

Senα·c = BD

Calculando o seno do ângulo θ, relativo ao triângulo BCD, teremos:

Senθ = BD
             a

Assim, o lado BD também mede:

senθ·a = BD

Como tanto senθ·a como Senα·c são iguais a BD, podemos escrever:

senθ·a = Senα·c

    a     =     c     
Senα       senθ

Fazendo a construção da altura relativa a outro lado desse mesmo triângulo e realizando os cálculos análogos aos que foram apresentados, é possível encontrar a última fração usada na lei dos senos.

A lei dos senos pode ser aplicada a um triângulo qualquer, como o representado na imagem
A lei dos senos pode ser aplicada a um triângulo qualquer, como o representado na imagem
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

(UFU-MG) Considere o triângulo retângulo a seguir.

Sabendo-se que α = 120°, AB = AC = 1 cm, então AD é igual a:

Questão 2

(Mackenzie – SP) Três ilhas A, B e C aparecem num mapa em escala 1:10000, como na figura. Das alternativas, a que melhor se aproxima de distância entre as ilhas A e B é:

a) 2,3 km

b) 2,1 km

c) 1,9 km

d) 1,4 km

e) 1,7 km

Mais Questões
Assuntos relacionados
As fórmulas de adição são usadas em operações entre razões trigonométricas
Transformações trigonométricas: fórmulas de adição
Clique aqui e descubra o que são e como podem ser usadas as transformações trigonométricas, métodos utilizados para realizar operações entre razões desse tipo. Aprenda as fórmulas de adição para calcular seno, cosseno e tangente da soma e subtração de dois arcos. Veja também exemplos com essas operações.
Relações no triângulo retângulo
Triângulo, Triângulo retângulo, Elementos do triângulo retângulo, Características do triângulo retângulo, Teoremas de Pitágoras, Relação métrica do triângulo retângulo.
Área de um triângulo com base na trigonometria
ângulo de triângulo, lados do triângulo, área do triângulo, fórmulas para o cálculo da área, área de qualquer triângulo, trigonometria e área de triângulos.
Aplicações da Trigonometria
A trigonometria no cotidiano.
Trigonometria no Triângulo Qualquer
Lei dos senos e lei dos cossenos.
A lei dos senos permite relacionar lados e ângulos de qualquer triângulo
A Lei dos Senos - compreendendo sua aplicação
Clique aqui e aprenda como e quando aplicar a lei dos senos!
Conheça a lei dos cossenos, uma propriedade trigonométrica que pode ser aplicada em qualquer triângulo
Lei dos cossenos
Você conhece a Lei dos Cossenos? Aprenda a demonstrar essa importante propriedade e a aplicá-la para um triângulo qualquer.
A razão é o quociente entre dois números, e a proporção é a igualdade entre duas razões
Razão e proporção
Você sabe no que consiste o conceito de razão e proporção? Acesse e descubra!
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
A soma dos ângulos internos de um triângulo é fixa
Soma dos ângulos internos de um triângulo
Clique para entender a soma dos ângulos internos de um triângulo e para obter exemplos dessa soma e a demonstração desse resultado.
O círculo trigonométrico representa medidas de seno, cosseno e tangente
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
O triângulo equilátero possui três lados congruentes
Propriedades do triângulo equilátero
Clique para aprender as propriedades dos triângulos equiláteros e para obter exemplos do uso dessas propriedades em problemas de Geometria.
A relação fundamental da Trigonometria é baseada no teorema de Pitágoras
Primeira relação fundamental da Trigonometria
Clique e aprenda o que é a primeira relação fundamental da Trigonometria e saiba como esse teorema relaciona-se com o ciclo trigonométrico.
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas
Segunda relação fundamental da Trigonometria
Clique e descubra qual é a segunda relação fundamental da Trigonometria e entenda como esse teorema associa as razões trigonométricas básicas.