Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Trigonometria
  4. Demonstração da lei dos senos

Demonstração da lei dos senos

A demonstração da lei dos senos é feita com base em trigonometria básica e envolve a construção de uma das alturas de um triângulo qualquer.

A trigonometria básica relaciona as medidas de lados de triângulos retângulos às medidas de seus ângulos, por meio das razões seno, cosseno e tangente. Quando o triângulo não é retângulo, existem outros dois teoremas que possibilitam relacionar as medidas de seus lados e ângulos. São eles: a lei dos senos e a lei dos cossenos.

Por meio desses teoremas, é possível descobrir a medida de um dos lados de um triângulo conhecendo as medidas de outros de seus lados e ângulos. A seguir, veremos a lei dos senos e a sua demonstração.

Lei dos senos

Dado um triângulo ABC ilustrado na figura a seguir:

A lei dos senos é a seguinte proporção:

     a     =      b     =     c      
Senα      Senβ        Senθ

Como se trata de uma proporção, deveremos usar apenas uma das igualdades, que é escolhida de acordo com os lados e ângulos disponíveis no triângulo. Para descobrir a medida de um dos lados do triângulo utilizando a lei dos senos, será necessário conhecer as medidas do outro lado e do ângulo oposto a ele, como também do ângulo oposto ao lado cuja medida será descoberta.

Note que o ângulo α é oposto ao lado a, e ambos estão na mesma fração. O mesmo é válido para todos os outros ângulos e lados.

Não pare agora... Tem mais depois da publicidade ;)

Demonstração da lei dos senos

Para demonstrar essa propriedade, observe a construção da altura desse triângulo, relativa à base AC.

A medida da base AC é igual a b. Observe que a altura BD corta o lado AC em duas partes não necessariamente iguais. Entretanto, uma altura sempre forma um ângulo de 90° com a base do triângulo. Sendo assim, temos dois triângulos retângulos na figura: o triângulo ABD e o triângulo BCD.

Calculando o seno do ângulo α, relativo ao triângulo ABD, teremos:

Senα = BD
             c

Assim, o lado BD mede:

Senα·c = BD

Calculando o seno do ângulo θ, relativo ao triângulo BCD, teremos:

Senθ = BD
             a

Assim, o lado BD também mede:

senθ·a = BD

Como tanto senθ·a como Senα·c são iguais a BD, podemos escrever:

senθ·a = Senα·c

    a     =     c     
Senα       senθ

Fazendo a construção da altura relativa a outro lado desse mesmo triângulo e realizando os cálculos análogos aos que foram apresentados, é possível encontrar a última fração usada na lei dos senos.

A lei dos senos pode ser aplicada a um triângulo qualquer, como o representado na imagem
A lei dos senos pode ser aplicada a um triângulo qualquer, como o representado na imagem
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

(UFU-MG) Considere o triângulo retângulo a seguir.

Sabendo-se que α = 120°, AB = AC = 1 cm, então AD é igual a:

Questão 2

(Mackenzie – SP) Três ilhas A, B e C aparecem num mapa em escala 1:10000, como na figura. Das alternativas, a que melhor se aproxima de distância entre as ilhas A e B é:

a) 2,3 km

b) 2,1 km

c) 1,9 km

d) 1,4 km

e) 1,7 km

Mais Questões
Assuntos relacionados
A lei dos senos permite relacionar lados e ângulos de qualquer triângulo
A Lei dos Senos - compreendendo sua aplicação
Clique aqui e aprenda como e quando aplicar a lei dos senos!
Aplicações da Trigonometria
A trigonometria no cotidiano.
Conheça a lei dos cossenos, uma propriedade trigonométrica que pode ser aplicada em qualquer triângulo
Lei dos cossenos
Você conhece a Lei dos Cossenos? Aprenda a demonstrar essa importante propriedade e a aplicá-la para um triângulo qualquer.
A relação fundamental da Trigonometria é baseada no teorema de Pitágoras
Primeira relação fundamental da Trigonometria
Clique e aprenda o que é a primeira relação fundamental da Trigonometria e saiba como esse teorema relaciona-se com o ciclo trigonométrico.
O triângulo equilátero possui três lados congruentes
Propriedades do triângulo equilátero
Clique para aprender as propriedades dos triângulos equiláteros e para obter exemplos do uso dessas propriedades em problemas de Geometria.
A razão é o quociente entre dois números, e a proporção é a igualdade entre duas razões
Razão e proporção
Você sabe no que consiste o conceito de razão e proporção? Acesse e descubra!
Relações no triângulo retângulo
Triângulo, Triângulo retângulo, Elementos do triângulo retângulo, Características do triângulo retângulo, Teoremas de Pitágoras, Relação métrica do triângulo retângulo.
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas
Segunda relação fundamental da Trigonometria
Clique e descubra qual é a segunda relação fundamental da Trigonometria e entenda como esse teorema associa as razões trigonométricas básicas.
O círculo trigonométrico representa medidas de seno, cosseno e tangente
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
A soma dos ângulos internos de um triângulo é fixa
Soma dos ângulos internos de um triângulo
Clique para entender a soma dos ângulos internos de um triângulo e para obter exemplos dessa soma e a demonstração desse resultado.
As fórmulas de adição são usadas em operações entre razões trigonométricas
Transformações trigonométricas: fórmulas de adição
Clique aqui e descubra o que são e como podem ser usadas as transformações trigonométricas, métodos utilizados para realizar operações entre razões desse tipo. Aprenda as fórmulas de adição para calcular seno, cosseno e tangente da soma e subtração de dois arcos. Veja também exemplos com essas operações.
Trigonometria no Triângulo Qualquer
Lei dos senos e lei dos cossenos.
Área de um triângulo com base na trigonometria
ângulo de triângulo, lados do triângulo, área do triângulo, fórmulas para o cálculo da área, área de qualquer triângulo, trigonometria e área de triângulos.
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.