Whatsapp icon Whatsapp

Segunda relação fundamental da Trigonometria

A segunda relação fundamental da Trigonometria garante que a tangente de um arco qualquer, no intervalo em que é válida, é igual à razão entre seno e cosseno desse mesmo arco.
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas

Existem duas relações fundamentais da Trigonometria, e, por meio delas, é possível associar as razões trigonométricas. Além disso, é também por meio delas que podem ser criadas as relações decorrentes, também chamadas identidades trigonométricas.

A segunda relação fundamental da Trigonometria é, considerando um arco x qualquer, exceto π/2 e 3π/2:

tgx = senx
                                                                   cosx

Assim, podemos afirmar que a tangente de um arco é igual à razão entre o seno e o cosseno desse mesmo arco.

A demonstração desse teorema depende de conceitos básicos do ciclo trigonométrico, que serão relembrados a seguir.

Ciclo trigonométrico

O ciclo trigonométrico é uma circunferência de raio 1 un, com centro localizado no ponto C = (0, 0) do plano cartesiano. Em outras palavras, o centro do ciclo trigonométrico é a origem do plano cartesiano.

Essa circunferência é usada para relacionar números reais a ângulos e aos arcos relativos a esses ângulos. Para tanto, qualquer ponto marcado sobre o ciclo possui coordenadas x e y. Esse mesmo ponto forma um ângulo α com o eixo x, seguindo o sentido anti-horário. Como o eixo x é o eixo dos cossenos, a coordenada x representa o valor numérico do cosseno do ângulo α. Como o eixo y é o eixo dos senos, a coordenada y representa o valor numérico do seno de α.

Da mesma forma, se marcarmos um ponto qualquer sobre o eixo x, por exemplo, esse ponto estará ligado a um número real, que, por sua vez, é coordenada de um ponto no ciclo trigonométrico. Por meio desse ponto, é possível descobrir o ângulo ligado ao valor escolhido sobre o eixo x.

Não pare agora... Tem mais depois da publicidade ;)

O eixo das tangentes é uma reta que passa fora do ciclo, tangente a ele pelo ponto (1, 0), como mostra a figura a seguir:

Marcando um ponto P sobre o ciclo, devemos construir o segmento de reta cujas extremidades são: o centro C do ciclo e um ponto A da reta tangente, de modo que esse segmento de reta contenha o ponto P sobre o ciclo. A distância entre o ponto A e o ponto (1, 0) é o valor da tangente no ciclo trigonométrico. Note que esse valor está ligado ao ângulo α: a abertura entre o segmento de reta construído e o eixo x.

Demonstração da relação fundamental

Para demostrar a segunda relação fundamental, observe inicialmente a construção abaixo:

Perceba que os triângulos CPD e CAB são semelhantes pelo caso AA (ângulo, ângulo). Isso significa que existe proporcionalidade entre seus lados. Uma das proporcionalidades que podem ser escritas é:

CD = CB
PD    AB

Nessa proporção, AB é a tangente de α, CD é o cosseno de α e PD é o seno de α. Além disso, CB = 1, pois é raio do ciclo. Substituindo esses valores na proporção acima, teremos:

cosα =    1   
senα     tgα  

Assim, usando as propriedades operatórias das equações, também é possível representá-la da seguinte forma:

senα = tgα
   cosα           

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Conjunto dos números reais
Acesse e descubra quais são os elementos que compõem o conjunto dos números reais.
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Identidades trigonométricas
Conheça as principais identidades trigonométricas e confira sua demonstração. Veja ainda exercícios sobre o assunto.
Plano cartesiano
Conheça o que é o plano cartesiano e qual a sua função. Saiba também como montar e marcar pontos nele.
Razões Trigonométricas no Triângulo Retângulo - 30º, 45º e 60º
Tabela de razões trigonométricas.
Razões trigonométricas
Veja quais são as principais razões trigonométricas e exemplos de problemas que cobram esse tipo de conteúdo. Conheça também os ângulos notáveis.
Relações Trigonométricas Fundamentais
Determinando o valor de ângulos de acordo com as relações fundamentais.
Semelhança de triângulos
Entenda o que é semelhança entre triângulos e o teorema fundamental da semelhança de triângulos. Veja também os casos de semelhança de triângulos e como aplicá-los.
Tabelas de razões trigonométricas
Clique para aprender a utilizar tabelas de razões trigonométricas e para descobrir os valores de seno, cosseno e tangente para ângulos agudos!
Transformações trigonométricas: fórmulas de adição
Clique aqui e descubra o que são e como podem ser usadas as transformações trigonométricas, métodos utilizados para realizar operações entre razões desse tipo. Aprenda as fórmulas de adição para calcular seno, cosseno e tangente da soma e subtração de dois arcos. Veja também exemplos com essas operações.
Ângulos
Aprenda o que são ângulos. Conheça suas classificações e saiba como medi-los. Entenda o que são ângulos congruentes e outros conceitos.
video icon
Escrito"O que você precisa saber sobre o ProUni 2024" sobre a ilustração colorida de uma página de um website.
Enem
O que você precisa saber sobre o ProUni 2024
O ProUni, Programa Universidade para Todos, oferece bolsas de estudo em instituições de ensino superiores particulares de todo o Brasil. As inscrições são abertas duas vezes, no início de cada semestre. Assista ao vídeo e fique por dentro de como utilizar o programa!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.