Whatsapp icon Whatsapp

Primeira relação fundamental da Trigonometria

A primeira relação fundamental da Trigonometria garante que a soma entre o quadrado do seno de um arco e o quadrado do cosseno desse mesmo arco é igual a 1.
A relação fundamental da Trigonometria é baseada no teorema de Pitágoras
A relação fundamental da Trigonometria é baseada no teorema de Pitágoras

Existem duas relações fundamentais da Trigonometria, por meio das quais é possível encontrar relações entre razões trigonométricas. Elas são chamadas fundamentais porque estão envolvidas na grande maioria dos cálculos básicos da Trigonometria em um nível intermediário. A primeira dessas razões, que é muito parecida com o teorema de Pitágoras, é a seguinte:

sen2x + cos2x = 1

Podemos dizer, portanto, que a soma do quadrado do seno de um arco com o quadrado do cosseno desse mesmo arco sempre será igual a 1.

A demonstração desse teorema, mais conhecida como primeira relação fundamental da Trigonometria, depende de conhecimentos básicos sobre o ciclo trigonométrico, que serão relembrados a seguir.

Ciclo trigonométrico

O ciclo trigonométrico é uma circunferência de raio 1 un, com centro localizado no ponto C = (0, 0) no plano cartesiano. Os eixos x e y desse plano são chamados, respectivamente, de eixo dos cossenos e eixo dos senos.

A razão para isso é simples: qualquer número real marcado no eixo x, no intervalo abrangido pelo ciclo – ou seja, no intervalo entre [– 1, 1] – representa o cosseno de um ângulo qualquer. O mesmo vale para qualquer número marcado no eixo dos senos, nesse mesmo intervalo, entretanto, esse número representará o seno de um ângulo qualquer.

Para verificar isso, basta desenhar um triângulo retângulo qualquer no ciclo, de modo que o ângulo avaliado tenha seu vértice no centro do ciclo e um de seus lados esteja sobre o eixo x, à direita do ponto C, como mostra a imagem a seguir.

Não pare agora... Tem mais depois da publicidade ;)

Observe que a hipotenusa desse triângulo sempre será um raio do ciclo. Esse raio sempre mede 1, ou seja, o resultado de senα = cateto oposto/1 = cateto oposto.

Então, marcando um ponto qualquer sobre um dos eixos (x ou y) do plano cartesiano, a distância entre esse ponto e o centro C sempre será igual ao comprimento do cateto oposto ou do cateto adjacente de um ângulo α e, por consequência, representa o valor do seno ou do cosseno do ângulo α.

Demonstração da primeira relação fundamental

Grande parte da demonstração da primeira relação fundamental é dada com a explicação sobre o ciclo trigonométrico acima. Na imagem a seguir, observe que o cateto oposto ao ângulo α é o segmento AB e que seu cateto adjacente é o segmento CB. Além disso, note também que a hipotenusa do triângulo ABC é o segmento CA, que mede 1 un.

Assim, utilizando o teorema de Pitágoras, teremos:

AB2 + CB2 = AC2

senα2 + cosα2 = 12

Sabendo que senα2 = sen2α, podemos escrever:

senα2 + cosα2 = 12

sen2α + cos2α = 1

Essa é justamente a primeira relação fundamental da Trigonometria.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Identidades trigonométricas
Conheça as principais identidades trigonométricas e confira sua demonstração. Veja ainda exercícios sobre o assunto.
O Teorema de Pitágoras Aplicado no Estudo da Trigonometria
Cálculo da diagonal do quadrado e da altura do triângulo equilátero.
O Teorema de Pitágoras no Cotidiano
Clique aqui e entenda como o Teorema de Pitágoras está presente em nosso cotidiano.
Razões trigonométricas
Veja quais são as principais razões trigonométricas e exemplos de problemas que cobram esse tipo de conteúdo. Conheça também os ângulos notáveis.
Relações Trigonométricas Fundamentais
Determinando o valor de ângulos de acordo com as relações fundamentais.
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
Teorema de Pitágoras: Altura e Área do Triângulo Equilátero
Importantes aplicações do Teorema de Pitágoras.
Transformações trigonométricas: fórmulas de adição
Clique aqui e descubra o que são e como podem ser usadas as transformações trigonométricas, métodos utilizados para realizar operações entre razões desse tipo. Aprenda as fórmulas de adição para calcular seno, cosseno e tangente da soma e subtração de dois arcos. Veja também exemplos com essas operações.
Ângulos
Aprenda o que são ângulos. Conheça suas classificações e saiba como medi-los. Entenda o que são ângulos congruentes e outros conceitos.
video icon
Escrito"Fração molar" sobre imagem de frascos com substâncias químicas, em um laboratório, ao lado do professor de química.
Química
Fração molar
A fração molar é um tipo de concentração de soluções e é dada pelo número de mol dos componentes de uma solução. Pode ser calculada a fração molar em relação ao solvente ou ao soluto, sendo que, obrigatoriamente, o valor da soma entre a fração molar do soluto e a do solvente deve sempre ser 1.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.