Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Diagonal do quadrado

Diagonal do quadrado

A diagonal do quadrado é um segmento de reta que liga dois dos vértices dessa figura geométrica e pode ser calculada pelo Teorema de Pitágoras.

As diagonais do quadrado, assim como as diagonais de qualquer outro polígono, são segmentos de reta que ligam dois vértices, mas que não são os lados desse polígono. Como o quadrado possui quatro lados, só possui duas diagonais, que são perpendiculares e congruentes.

Podemos encontrar a medida da diagonal do quadrado de duas formas. Acompanhe:

Teorema de Pitágoras

O cálculo da medida da diagonal do quadrado pode ser feito pelo teorema de Pitágoras.

Exemplo: Qual é a medida da diagonal de um quadrado cujo lado mede 8 cm?

Solução:

Dois lados adjacentes de um quadrado e uma de suas diagonais formam um triângulo retângulo. Para encontrar a medida da diagonal desse quadrado, basta calcular a medida da hipotenusa de um triângulo isósceles retângulo. Veja:

d2 = 82 + 82

d2 = 64 + 64

d2 = 128

d = √128

d = 11,31 cm, aproximadamente

→ Fórmula da diagonal

Essa fórmula é obtida por meio do teorema de Pitágoras. A medida da diagonal de um quadrado de lado l pode ser obtida da seguinte maneira:

d2 = l2 + l2

Não pare agora... Tem mais depois da publicidade ;)

d2 = 2l2

d = √(2l2)

d = l√2

Exemplos:

1º) Um terreno com formato quadrado possui lado igual a 17 metros. Deseja-se cercar metade desse terreno dividindo-o em dois triângulos iguais. Quantos metros de cerca serão necessários?

Solução: Observe que o quadrado será dividido por uma de suas diagonais e que dois dos lados do terreno também serão usados para construir a cerca, portanto, para calcular a quantidade de metros da cerca, basta somar 17 + 17 + d, que é a diagonal do quadrado e pode ser encontrada da seguinte maneira:

d = 17√2

d = 17·1,41

d = 20, aproximadamente.

A quantidade de cerca que será usada é 17 + 17 + 20 = 34 + 20 = 54 metros.

2º) Um terreno tem formato quadrado e a medida de sua diagonal é de 24 centímetros. Determine a medida de seus lados.

Usando a mesma fórmula, podemos fazer o seguinte:

d = l√2

24 = l√2

24 = l
√2     

l = 24
    √2

Pelo processo de racionalização, teremos:

l = 24√2
     2

l = 12√2

l = 12·1,41

l = 16,92 centímetros, aproximadamente.

A diagonal de um quadrado é um segmento que liga vértices
A diagonal de um quadrado é um segmento que liga vértices
Publicado por: Luiz Paulo Moreira Silva
Assuntos relacionados
Relações no triângulo retângulo
Triângulo, Triângulo retângulo, Elementos do triângulo retângulo, Características do triângulo retângulo, Teoremas de Pitágoras, Relação métrica do triângulo retângulo.
O Teorema de Pitágoras Aplicado no Estudo da Trigonometria
Cálculo da diagonal do quadrado e da altura do triângulo equilátero.
Retas perpendiculares
coeficiente angular, Retas perpendiculares, coeficiente angular de retas perpendiculares, condição de existência de retas perpendiculares, tangente, ângulo de inclinação.
Racionalizando Denominadores
Técnicas de racionalização de denominadores.
Conhecendo os Elementos de um Polígono
Clique aqui e aprenda a identificar quais são os elementos de um polígono!
Obter o resultado referente à adição de raízes só é possível quando os radicais são semelhantes
Operações com radicais
Os cálculos envolvendo raízes sempre nos assustam, não é mesmo? Descubra aqui como é fácil realizar operações com radicais na adição e na subtração.
Triângulos isósceles: dois lados com a mesma medida
Propriedades do triângulo isósceles
Veja propriedades que podem ser usadas para diferenciar triângulos isósceles de triângulos escalenos.
Algumas das 275 diagonais de um polígono de 25 lados
Diagonais de um polígono
Clique para conhecer um modo de obter o número de diagonais de um polígono em que não é necessário contá-las uma a uma.
Segmento de reta que começa em A e vai até B
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Cubo: sólido geométrico formado por faces quadradas
Quadrados
Clique e descubra as características dos quadrados e algumas de suas propriedades que são herdadas de outras figuras geométricas.
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.