Whatsapp icon Whatsapp

Gráfico da função exponencial

O gráfico da função exponencial é representado por uma curva, obtida por meio dos pares ordenados que relacionam os valores de x a de y = f(x).
Curva que representa uma função exponencial crescente
Curva que representa uma função exponencial crescente

A função exponencial é aquela em que a variável é um expoente. Matematicamente, ela é definida como f de R em R, tal que f(x) = ax, em que a ϵ R, a > 0 e a ≠ 1. O gráfico dessa função é uma curva obtida ao encontrar alguns pares ordenados que pertencem à função e ao desenhar essa curva que passa por eles. A observação de alguns gráficos dessas funções permite deduzir algumas de suas propriedades, que serão discutidas neste texto.

Construção do gráfico da função exponencial

Em uma função qualquer, encontrar pares ordenados que pertençam ao seu gráfico é tarefa simples: basta escolher valores para x e encontrar os valores de f(x) ligados a eles no contradomínio. Isso é feito substituindo o valor de x escolhido na função e calculando a expressão numérica resultante.

1º Exemplo: para encontrar 5 pares ordenados pertencentes ao gráfico da função f(x) = 2x, usaremos os valores x = – 3, x = – 2, x = – 1, x = 0, x = 1, x = 2 e x = 3 e preencheremos a seguinte tabela:

Com a tabela preenchida, perceba que cada valor de x se relaciona a um valor de f(x) que pode ser compreendido como y no par ordenado. Sendo assim, os pares ordenados formados são:

A = (– 3, 1/8)

B = (– 2, 1/4)

C = (– 1, 1/2)

Não pare agora... Tem mais depois da publicidade ;)

D = (0, 1)

E = (1, 2)

F = (2, 4)

G = (3, 8)

Para desenhar o gráfico, marque os pontos acima do plano cartesiano e desenhe uma curva que os contenha. Atenção: os pontos não devem ser ligados com linhas retas, devem estar sobre uma curva.

2º Exemplo: Fazendo os mesmos procedimentos para a função f(x) = 0,25x, obtemos os seguintes pontos:

A1 = (– 3, 64)

B1 = (– 2, 16)

C1 = (– 1, 4)

D1 = (0, 1)

E1 = (1, 1/4)

F1 = (2, 1/16)

G1 = (3, 1/64)

Construímos o gráfico dessa função junto ao gráfico do primeiro exemplo para comparação:

Propriedades

Nos gráficos acima, é possível observar todas as propriedades das funções exponenciais:

1 – Se a > 1, então a função exponencial é crescente. Para perceber isso, observe a função f(x) = 2x;

2 – Se 0 < a < 1, então a função exponencial é decrescente. Para perceber isso, observe a função f(x) = 0,25x;

3 – Para todo a pertencente aos números reais e para todo x também pertencente a esse conjunto, a função será positiva. Note pelos gráficos que, independentemente dos valores de x e de a, não existem pontos abaixo do eixo x;

4 – Toda função exponencial possui o ponto de coordenadas (0,1).

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Pertencem ao conjunto dos reais os número naturais, inteiros, racionais e irracionais
Conjunto dos números reais
Acesse e descubra quais são os elementos que compõem o conjunto dos números reais.
Equação exponencial
Entenda o que é uma equação exponencial. Resolva uma equação exponencial, e use as propriedades de potência para encontrar a solução de equações exponenciais.
Equações Exponenciais
Resolução de equações exponenciais com auxílio do logaritmo
Expressões Numéricas Envolvendo Multiplicação
Resolução de expressões numéricas.
Função Exponencial e Matemática Financeira
Aplicações da função exponencial.
Função exponencial
Clique aqui e conheça a função exponencial. Aprenda como fazer a análise e construir o gráfico desse tipo de função. Teste sua compreensão resolvendo os exercícios.
Inequação exponencial
Entenda o que é uma inequação exponencial. Aprenda como resolver uma inequação exponencial. Encontre o conjunto de soluções de uma inequação exponencial.
Plano cartesiano
Conheça o que é o plano cartesiano e qual a sua função. Saiba também como montar e marcar pontos nele.
No gráfico da função exponencial, todos os valores da função estão acima do eixo x
Propriedades da função exponencial
Clique e aprenda as propriedades da função exponencial que podem facilitar os cálculos envolvendo essas funções com expoente variável.
video icon
Química
Equilíbrio químico: grau de equilíbrio
Um importante conceito para os cálculos com equilíbrio é o grau de equilíbrio, simbolizado por alfa (α), que é a relação entre número de mol de reagente que reage até atingir o equilíbrio e o número de mol de reagente inicial.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Matemática
Área da esfera
Clique para aprender a calcular a área da esfera.
video icon
Videoaula Brasil Escola
Inglês
Estrangeirismo
Nessa videoaula você entende sobre o estrangeirismo na música "Samba do Approach."
video icon
videoaula brasil escola
História
Crise de 1929
A quebra da bolsa de valores de Nova Iorque afetou não só os EUA, como o mundo. Entenda!