Whatsapp icon Whatsapp

Propriedades da função exponencial

As propriedades da função exponencial resultam das potências e podem facilitar os cálculos com esse tipo de função que possui uma variável no expoente.
No gráfico da função exponencial, todos os valores da função estão acima do eixo x
No gráfico da função exponencial, todos os valores da função estão acima do eixo x

Uma função exponencial é uma função que possui uma variável como expoente. Matematicamente, ela pode ser representada por f de R em R, que é obtida pela lei de formação f(x) = ax, em que “a” é um número real dado, a > 0 e a ≠ 1. As funções desse tipo possuem algumas propriedades resultantes das potências, além de características que podem ajudar na realização dos cálculos. Essas propriedades são:

1ª Propriedade: Se x = 0, então f(x) = 1.

Isso acontece por causa das propriedades de potências. Observe o que ocorre à função f(x) = 2x quando x = 0:

f(x) = 2x

f(0) = 20

f(0) = 1

No entanto, esse resultado vale para todo a pertencente aos números reais, pois qualquer número elevado a zero será igual a um. Sendo assim, o caso geral é:

f(x) = ax

f(0) = a0

f(0) = 1

2ª Propriedade: Se a > 1, então, a função exponencial será crescente.

Uma função é considerada crescente quando dados os dois valores distintos do domínio x1 e x2, com x1 < x2: f(x1) < f(x2).

Assim, na função exponencial, podemos observar os expoentes x1 e x2. Toda vez que x1 < x2, e que a > 1, teremos como consequência ax1 < ax2.

Por exemplo: f(x) = 2x. Observe que a = 2, que é maior que 1. Assim, essa função é crescente. Por isso, tomando x1 = 1 e x2 = 2, teremos:

ax1 < ax2

21 < 22

2 < 4

3ª Propriedade: Se “a” for menor que 1 e maior que zero, então, a função exponencial será decrescente.

Uma função é considerada decrescente quando dados os dois valores distintos do domínio x1 e x2, com x1 < x2: f(x1) > f(x2).

Não pare agora... Tem mais depois da publicidade ;)

Assim, na função exponencial, podemos observar os expoentes x1 e x2. Toda vez que x1 < x2, e que 0 < a < 1, teremos como consequência ax1 > ax2.

Por exemplo: f(x) = 0,5x. Nesse exemplo, a = 0,5 e está no intervalo referente a essa propriedade. Como essa função é decrescente, se x1 = 1 e x2 = 2, teremos:

x1 < x2

ax1 > ax2

0,51 > 0,52

0,5 > 0,25

Observe que “a” é obrigatoriamente diferente de 1 por definição da função e, se for igual a zero, a função será contemplada pela primeira propriedade. Por isso, o intervalo aberto 0 < a < 1.

4ª Propriedade: Sempre que ax1 = ax2, teremos x1 = x2.

Isso acontece para todo valor de x, desde que a ≠ 1 e a > 0.

Por exemplo: na função f(x) = 7x. Se f(x1) = 49 e f(x2) = 49, teremos:

f(x1) = f(x2)

ax1 = ax2

7x1 = 7x2

Como o resultado das duas potências, no exemplo, é igual a 49, então, x1 e x2 só podem ser iguais a 2.

x1 = x2 = 2

5ª Propriedade: O gráfico da função exponencial sempre estará localizado acima do eixo x.

Isso acontece porque, por definição, “a” sempre será maior que zero em toda função exponencial. Como “a” é base de uma potência, o resultado dessa potência sempre será maior que zero. Isso significa que, no plano cartesiano, os valores de f(x) correspondentes a y nunca serão negativos, ou seja, nunca ficarão abaixo do eixo x.

Quando a função é decrescente, os valores de y no plano cartesiano aproximam-se de zero sempre que o valor de x aumenta. Caso contrário, a função afastar-se-ia de zero com o aumento de x.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Cinco passos para construir o gráfico de uma função do 2º grau
Aprenda a construir o gráfico de uma função do 2º grau em cinco passos!
Conjunto dos números reais
Acesse e descubra quais são os elementos que compõem o conjunto dos números reais.
Função Exponencial e Matemática Financeira
Aplicações da função exponencial.
Função Linear
Você sabe o que é uma função linear? Confira esse tipo especial de função afim!
Função bijetora
Clique para aprender o que é uma função bijetora a partir das definições de função, função injetora e função sobrejetora.
Função do 1º grau
Você sabe qual a formação de uma função do 1º grau? Clique aqui e aprenda!
Função exponencial
Clique aqui e conheça a função exponencial. Aprenda como fazer a análise e construir o gráfico desse tipo de função. Teste sua compreensão resolvendo os exercícios.
Propriedades de uma função
Função, tipos de função, propriedade da função, função bijetora, função sobrejetora, função injetora, características de uma função, características de uma função sobrejetora, características de uma função injetora, características de uma função bijetora.
video icon
Escrito"Esterificação ou reação de esterificação" em fundo laranja.
Química
Esterificação ou reação de esterificação
As reações de esterificação são processos químicos que ocorrem entre um ácido e um álcool, nos quais o ácido doa sua hidroxila e o álcool doa um hidrogênio, resultando na formação de éster e água, daí o nome desse tipo de reação.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.