Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Equação
  4. Propriedades da desigualdade nas inequações

Propriedades da desigualdade nas inequações

As inequações são expressões algébricas que possuem uma desigualdade e possuem propriedades e uma análise de resultados diferentes das equações.

As inequações são expressões algébricas que possuem uma desigualdade. Essa é a diferença básica entre equações e inequações, pois as equações possuem uma igualdade. As implicações disso são: um mesmo modo de resolver equações e inequações, uma análise de resultados diferente para ambas e algumas propriedades a mais para as inequações. Essas propriedades são o objeto de discussão deste artigo.

Antes de partir para as propriedades, vale destacar algumas diferenças entre equações e inequações.

Diferenças entre equações e inequações

As equações possuem resultado único se forem de primeiro grau (a quantidade de resultados de uma equação é igual ao seu grau). Já as inequações podem ter desde zero a infinitos resultados, dependendo do conjunto numérico e das condições em que foi definida.

Sendo assim, a análise dos resultados deve seguir padrões também diferentes. As equações respondem a perguntas que possuem resposta exata. Uma corrida de táxi, por exemplo, geralmente custa R$ 6,00 iniciais e mais R$ 4,20 por quilômetro rodado. Supondo que uma pessoa dispõe de R$ 32,00 para essa viagem, quantos quilômetros poderá andar?

A equação que representa essa situação e sua resolução são as seguintes:

4,2x + 6 = 32

4,2x = 32 – 6

4,2x = 26

x = 26
      4,2

x = 6,19 km

Observe que a solução de uma equação possui resultado exato. Quantos quilômetros podem ser rodados nessas condições? Exatamente 6,19.

Já as inequações possuem resultados descritos como conjuntos. O preço de uma corrida de táxi é determinado por um valor fixo de taxa de deslocamento, que é R$ 6,00, e um valor variável que depende da quantidade de quilômetros rodados: R$ 4,20 por quilômetro. Sabendo que uma corrida foi menor que 5 km, que valor foi gasto?

Se x = quilômetros percorridos e y = preço da corrida, a inequação e sua solução são as seguintes:

y = 4,2x + 6

Se x < 5, então:

y < 4,2·5 + 6

y < 21 + 6

y < 27

Assim, o valor gasto na corrida foi inferior a R$ 27,00, mas foi superior a R$ 6,00, que é o valor mínimo cobrado. Então, o resultado é algum número com duas casas decimais entre 6 e 27.

Não pare agora... Tem mais depois da publicidade ;)

Propriedades da desigualdade

Tendo em vista as diferenças entre equações e inequações, podemos discutir as propriedades da desigualdade.

  • Somar qualquer número ou incógnita nos dois membros de uma inequação não altera o sentido da desigualdade.

Por exemplo, na inequação a seguir, devemos somar alguns números a fim de reescrevê-la com os termos que possuem incógnita no primeiro membro e os outros que não possuem no segundo.

4x – 20 > 2x + 8

4x – 20 – 2x > 2x + 8 – 2x

2x – 20 > 8

2x – 20 + 20 > 8 + 20

2x > 28

Note que o processo acima é equivalente ao descrito nos métodos práticos, em que basta trocar números de lado, desde que o seu sinal seja trocado. Fazer isso não altera o sentido da desigualdade em uma inequação.

  • Subtrair qualquer número ou incógnita nos dois membros de uma inequação não altera o sentido da desigualdade.

Essa propriedade é equivalente à última e seu exemplo já foi dado ao subtrair 2x nos dois membros da última inequação.

  • Multiplicar um número positivo em ambos os membros de uma inequação não altera o sentido da desigualdade.

Para exemplificar, tomemos o exemplo anterior, que foi resolvido até encontrar:

2x > 28

Para concluir a resolução, devemos multiplicar ambos os membros por 1/2, que é um número positivo e não altera a desigualdade. Observe:

1·2x > 28·1
2             2

x > 14

  • Multiplicar um número negativo em ambos os membros de uma inequação inverte o sentido da desigualdade.

Essa propriedade funciona em dois casos práticos. Quando existe um número negativo que será passado para o outro lado multiplicando ou dividindo, inverte-se o sinal da desigualdade. Quando multiplicamos uma inequação por – 1, inverte-se o sinal da desigualdade.

16x – 30 > 20x + 10

16x – 20x > 10 + 30

– 4x > 40 (– 1)

4x < – 40

x < – 40
         4

x < – 10

Uma excelente ideia: aprender as propriedades da desigualdade para não errar nas inequações
Uma excelente ideia: aprender as propriedades da desigualdade para não errar nas inequações
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Lista de Exercícios

Questão 1

Quais números naturais representam soluções da inequação abaixo?

4x + 28 > 9x – 2

a) Apenas o número 6.

b) Todos os números menores que 6.

c) Todos os números inteiros menores que 6.

d) Qualquer número inteiro maior que 6.

e) A lista de números inteiros sequenciais que começa com zero e termina com 5.

Questão 2

Qual das alternativas abaixo não é verdadeira com relação às propriedades da desigualdade?

a) O sentido da desigualdade permanece inalterado caso um número positivo seja somado a ambos os membros da inequação.

b) O sentido da desigualdade permanece inalterado quando um número natural é multiplicado em ambos os membros da inequação.

c) O sentido da desigualdade deve ser invertido quando um número negativo é multiplicado em ambos os membros da inequação.

d) O sentido da desigualdade deve ser invertido caso um número negativo seja somado em ambos os membros da inequação.

e) O sentido da desigualdade deve ser invertido quando os membros da inequação forem multiplicados pelo número – 3.

Mais Questões
Assuntos relacionados
Seno e cosseno são duas das razões trigonométricas que podem aparecer em inequações
Inequações trigonométricas: cosx < k
Clique e aprenda a resolver inequações trigonométricas do tipo cosx < k e conheça os fundamentos para essa resolução.
Toda inequação trigonométrica pode ser reduzida a uma inequação e utilizar o ciclo trigonométrico na resolução
Inequações trigonométricas: tgx > k
Clique para aprender a solucionar uma das inequações trigonométricas, tgx > k, por meio do ciclo trigonométrico e da fórmula obtida a partir dele.
Expressão algébrica
Definição de expressão algébrica, Expressão numérica, Incógnitas, Operações, Valor desconhecido, Simplificação de expressões algébricas, Propriedade distributiva, Processo algébrico
Definição de equação do 1º grau
Saiba como resolver uma equação do 1º grau.
Inequação – produto
Inequação, produto de inequações, inequação produto, Produto, função, como resolver uma inequação produto, representações de uma inequação produto, desigualdade, representação de uma desigualdade.
Inequação
Definição de inequação, resolução e representação na reta real.
Condições de uma Inequação do 2º grau
Estudo de Inequações do 2º grau.
Valores de x, em prol da matemática.
Inequações do 1º Grau
Entendendo as inequações do primeiro grau através do estudo do gráfico da função para análise dos seus sinais.
Inequações exponenciais
Conceituando as inequações exponenciais. Resolvendo problemas envolvendo equações exponenciais por meio das propriedades das potências.
Inequações-Produto
Pela análise dos sinais das funções de uma inequação-produto podemos determinar o intervalo no qual a desigualdade é satisfeita. Portanto, é necessário estudar os sinais das funções e o produto desses sinais.
Equações: expressões que contêm números conhecidos, números desconhecidos e uma igualdade
Quatro passos para resolver equações do primeiro grau
Clique para aprender a resolver equações do primeiro grau em quatro passos!