Whatsapp icon Whatsapp

Relação entre segmentos secantes na circunferência

A relação entre dois segmentos secantes na circunferência é de proporcionalidade e pode ser usada para encontrar a medida de um desses segmentos.
A relação entre segmentos secantes na circunferência e triângulos formados por eles é de proporcionalidade
A relação entre segmentos secantes na circunferência e triângulos formados por eles é de proporcionalidade

Se uma circunferência é cortada por dois segmentos de reta secantes, é possível calcular algumas medidas desses segmentos usando a proporcionalidade. Para isso, a regra é a seguinte: A, B, C e D devem ser pontos de uma circunferência de raio r e centro O, e M deve ser um ponto fora dela, de forma que os segmentos AM e CM contenham os pontos B e D, respectivamente. Nesse caso, vale a proporção:

AM = DM
CM    BM

A circunferência descrita, juntamente aos segmentos e pontos, pode ser visualizada na imagem a seguir:

Usando a propriedade fundamental das proporções, também podemos afirmar que a proporção acima é equivalente a:

AM·BM = CM·DM

Exemplo:

Calcule o comprimento do segmento CM, secante à circunferência da imagem abaixo:

Usando a igualdade resultante da propriedade fundamental das proporções, substituindo as medidas dos respectivos segmentos e fazendo DM = x, temos:

AM·BM = CM·DM

180·100 = (110 + x)·x

18000 = 110x + x2

x2 + 110x – 18000 = 0

Usando o método de completar quadrados, podemos resolver essa equação do segundo grau da seguinte maneira:

x2 + 110x – 18000 = 0

x2 + 110x – 18000 + 21025 = 21025

x2 + 110x + 3025 = 21025

(x + 55)2 = 21025

√[(x + 55)2] = √(21025)

x + 55 = ± 145

Não pare agora... Tem mais depois da publicidade ;)

x = ± 145 – 55

x’ = 145 – 55 = 90
x’’ = – 145 – 55 = – 200

Lembre-se de que essa equação também pode ser resolvida usando fórmula de Bháskara. Observe que o resultado negativo não é válido, pois x = DM, que é um segmento de reta, portanto:

x = DM = 90 cm.

Como o exercício pediu o comprimento de CM = CD + DM, temos:

CM = 110 + 90 = 200 cm

Demonstração da propriedade

Para demostrar essa relação envolvendo segmentos secantes, considere a mesma circunferência e segmentos dados no início do texto: circunferência de centro O que possui os pontos ABC e D e o ponto M fora dela, tais que os segmentos AM e CM também contenham os pontos B e D, respectivamente. Essa construção é ilustrada na imagem abaixo:

Observe que, traçando os segmentos CB e AD, podemos formar dois triângulos: AMD e CMB. Esses dois triângulos são semelhantes, pois:

1 – O ângulo M é comum para os dois triângulos;

2 – Os ângulos A e C são congruentes, pois são inscritos e representam o mesmo arco.

Assim, pelo caso de semelhança ângulo-ângulo, os triângulos AMD e CMB são semelhantes, por isso, seus lados correspondentes são proporcionais. Como o triângulo AMD está invertido verticalmente com relação ao outro, temos a seguinte proporção entre seus lados:

AM = DM
CM    BM

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Exemplos de círculos coloridos
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Ferramentas usadas para medir e construir ângulos no círculo trigonométrico
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Equação do 2º Grau
Teorema de Bháskara: fórmula resolutiva de uma equação do 2º grau.
As equações do segundo grau podem ser resolvidas por meio da fórmula de Bhaskara
Fórmula de Bhaskara
Clique para aprender a utilizar a fórmula de Bhaskara para encontrar raízes de equações do segundo grau!
Resolver uma equação envolve boas ideias e atitude. Esse é o caso do método de completar quadrados
Método de completar quadrados
Clique para aprender a resolver equações do segundo grau utilizando produtos notáveis em um método chamado: completar quadrados!
Reta tangente, externa ou secante são as posições entre reta e circunferência
Posição relativa entre uma reta e uma circunferência
Clique para aprender a posição relativa entre uma reta e uma circunferência e conheça também algumas de suas propriedades.
Proporção
Conheça tudo sobre proporção: aprenda a verificar se os valores são proporcionais ou não e entenda o que são grandezas direta e inversamente proporcionais.
A razão é o quociente entre dois números, e a proporção é a igualdade entre duas razões
Razão e proporção
Você sabe no que consiste o conceito de razão e proporção? Acesse e descubra!
Segmento de reta que começa em A e vai até B
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Semelhança de triângulos
Entenda o que é semelhança entre triângulos e o teorema fundamental da semelhança de triângulos. Veja também os casos de semelhança de triângulos e como aplicá-los.
video icon
Filosofia
Paulo Freire
Com esta videoaula, você vai saber mais sobre a trajetória de Paulo Freire. Pernambucano, escritor, filósofo e educador, Paulo Reglus Neves Freire nasceu em 19 de setembro de 1921. Reconhecido internacionalmente, premiado e muito citado, ele foi considerado o patrono da educação brasileira.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas