Whatsapp icon Whatsapp

Secante, cossecante e cotangente

Secante, cossecante e cotangente são as razões inversas a cosseno, seno e tangente, respectivamente, e podem ser obtidas no ciclo trigonométrico.
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico

Cossecante, secante e cotangente são as razões inversas das razões trigonométricas seno, cosseno e tangente, respectivamente. Assim, a definição básica dessas razões é:

cossecα =    1    
               senα

secα =    1    
          cosα

Cotgα =     1    
                                                                        tgα

A cotangente de um ângulo qualquer também pode ser definida como:

Cotgα = Cosα
             senα

Para isso, basta substituir na relação anterior tgα = senα/cosα e resolver a divisão de frações.

Ciclo trigonométrico e a medida de cossecante

O ciclo trigonométrico é uma circunferência de raio 1 un, e seu centro é o ponto C = (0, 0) do plano cartesiano. Esse ciclo é usado para representar as medidas de ângulos e seus respectivos valores de seno, cosseno e tangente. Em um desses ciclos, também é possível representar os valores de cossecante, secante e tangente de um ângulo qualquer.

Para tanto, observe o ciclo a seguir e as construções feitas nele.

Lembre-se de que um dos lados de um ângulo qualquer em um ciclo trigonométrico é sempre o segmento CA. O segundo lado do ângulo α é o segmento CB. Observe que justamente pelo ponto B passa a reta tangente à circunferência. É dessa maneira que relacionamos essa reta ao ângulo α. A cossecante de α é a medida do comprimento do segmento CD, que vai da origem do plano cartesiano até o ponto de encontro entre a reta tangente ao ciclo e o eixo dos senos (eixo y).

Não pare agora... Tem mais depois da publicidade ;)

Assim sendo, é possível observar que a cotangente é sempre positiva nos dois primeiros quadrantes e negativas no terceiro e quarto quadrantes. Perceba também que a cossecante não existe para o ângulo de 180°.

Ciclo trigonométrico e a medida de secante

Fazendo uma construção parecida com a anterior sobre o ciclo trigonométrico, teremos:

Observe que a reta tangente ao ciclo trigonométrico passa pelo ponto B. Além disso, essa reta toca o eixo dos cossenos no ponto D. Como dito anteriormente, a reta tangente ao ciclo, passando pelo ponto B, está relacionada ao ângulo α, assim, variando o ângulo, modifica-se também a posição dessa reta e, consequentemente, o comprimento do segmento CD. O comprimento desse segmento é igual ao comprimento da secante do ângulo α.

Perceba que os valores da secante de um ângulo sempre são positivos no primeiro e no quarto quadrante. No segundo e no terceiro, esses valores são negativos. A secante também não existe para o ângulo de 180°.

Ciclo trigonométrico e a cotangente de α

No ciclo trigonométrico, a reta paralela ao eixo x (eixo dos cossenos), tangente ao ciclo no ponto B, em destaque na figura abaixo, é o eixo das cotangentes.

Para encontrar a medida de uma cotangente no ciclo trigonométrico, é necessário apenas construir o ângulo α e observar onde será o ponto de intersecção entre seu lado e o eixo das cotangentes. Esse ponto de intersecção será chamado A.

A cotangente do ângulo α será o comprimento do segmento AB.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

A lei dos senos permite relacionar lados e ângulos de qualquer triângulo
A Lei dos Senos - compreendendo sua aplicação
Clique aqui e aprenda como e quando aplicar a lei dos senos!
Exemplos de círculos coloridos
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Ferramentas usadas para medir e construir ângulos no círculo trigonométrico
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Fórmulas usadas para cálculo de razões trigonométricas envolvendo arcos duplos
Fórmulas de arco duplo
Clique e aprenda como calcular arcos duplos na trigonometria. Obtenha as fórmulas utilizadas para o cálculo de arcos duplos e veja exemplos de como usá-las. Confira também uma maneira de obter essas fórmulas a partir das expressões usadas para adição de arcos e da relação fundamental da trigonometria. Clique e aprenda!
Conheça a lei dos cossenos, uma propriedade trigonométrica que pode ser aplicada em qualquer triângulo
Lei dos cossenos
Você conhece a Lei dos Cossenos? Aprenda a demonstrar essa importante propriedade e a aplicá-la para um triângulo qualquer.
Plano cartesiano
Conheça o que é o plano cartesiano e qual a sua função. Saiba também como montar e marcar pontos nele.
A razão é o quociente entre dois números, e a proporção é a igualdade entre duas razões
Razão e proporção
Você sabe no que consiste o conceito de razão e proporção? Acesse e descubra!
Razões trigonométricas
Veja quais são as principais razões trigonométricas e exemplos de problemas que cobram esse tipo de conteúdo. Conheça também os ângulos notáveis.
O círculo trigonométrico representa medidas de seno, cosseno e tangente
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
video icon
Matemática
Imagem de uma função
Nesta aula veremos um breve resumo do que é domínio e contradomínio de uma função para compreendermos o que é imagem de uma função. Analisaremos a imagem de uma função dada a lei de formação e dado o desenho no plano cartesiano.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas