Whatsapp icon Whatsapp

Secante, cossecante e cotangente

Secante, cossecante e cotangente são as razões inversas a cosseno, seno e tangente, respectivamente, e podem ser obtidas no ciclo trigonométrico.
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico

Cossecante, secante e cotangente são as razões inversas das razões trigonométricas seno, cosseno e tangente, respectivamente. Assim, a definição básica dessas razões é:

cossecα =    1    
               senα

secα =    1    
          cosα

Cotgα =     1    
                                                                        tgα

A cotangente de um ângulo qualquer também pode ser definida como:

Cotgα = Cosα
             senα

Para isso, basta substituir na relação anterior tgα = senα/cosα e resolver a divisão de frações.

Ciclo trigonométrico e a medida de cossecante

O ciclo trigonométrico é uma circunferência de raio 1 un, e seu centro é o ponto C = (0, 0) do plano cartesiano. Esse ciclo é usado para representar as medidas de ângulos e seus respectivos valores de seno, cosseno e tangente. Em um desses ciclos, também é possível representar os valores de cossecante, secante e tangente de um ângulo qualquer.

Para tanto, observe o ciclo a seguir e as construções feitas nele.

Lembre-se de que um dos lados de um ângulo qualquer em um ciclo trigonométrico é sempre o segmento CA. O segundo lado do ângulo α é o segmento CB. Observe que justamente pelo ponto B passa a reta tangente à circunferência. É dessa maneira que relacionamos essa reta ao ângulo α. A cossecante de α é a medida do comprimento do segmento CD, que vai da origem do plano cartesiano até o ponto de encontro entre a reta tangente ao ciclo e o eixo dos senos (eixo y).

Não pare agora... Tem mais depois da publicidade ;)

Assim sendo, é possível observar que a cotangente é sempre positiva nos dois primeiros quadrantes e negativas no terceiro e quarto quadrantes. Perceba também que a cossecante não existe para o ângulo de 180°.

Ciclo trigonométrico e a medida de secante

Fazendo uma construção parecida com a anterior sobre o ciclo trigonométrico, teremos:

Observe que a reta tangente ao ciclo trigonométrico passa pelo ponto B. Além disso, essa reta toca o eixo dos cossenos no ponto D. Como dito anteriormente, a reta tangente ao ciclo, passando pelo ponto B, está relacionada ao ângulo α, assim, variando o ângulo, modifica-se também a posição dessa reta e, consequentemente, o comprimento do segmento CD. O comprimento desse segmento é igual ao comprimento da secante do ângulo α.

Perceba que os valores da secante de um ângulo sempre são positivos no primeiro e no quarto quadrante. No segundo e no terceiro, esses valores são negativos. A secante também não existe para o ângulo de 180°.

Ciclo trigonométrico e a cotangente de α

No ciclo trigonométrico, a reta paralela ao eixo x (eixo dos cossenos), tangente ao ciclo no ponto B, em destaque na figura abaixo, é o eixo das cotangentes.

Para encontrar a medida de uma cotangente no ciclo trigonométrico, é necessário apenas construir o ângulo α e observar onde será o ponto de intersecção entre seu lado e o eixo das cotangentes. Esse ponto de intersecção será chamado A.

A cotangente do ângulo α será o comprimento do segmento AB.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

A lei dos senos permite relacionar lados e ângulos de qualquer triângulo
A Lei dos Senos - compreendendo sua aplicação
Clique aqui e aprenda como e quando aplicar a lei dos senos!
Exemplos de círculos coloridos
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Ferramentas usadas para medir e construir ângulos no círculo trigonométrico
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Fórmulas usadas para cálculo de razões trigonométricas envolvendo arcos duplos
Fórmulas de arco duplo
Clique e aprenda como calcular arcos duplos na trigonometria. Obtenha as fórmulas utilizadas para o cálculo de arcos duplos e veja exemplos de como usá-las. Confira também uma maneira de obter essas fórmulas a partir das expressões usadas para adição de arcos e da relação fundamental da trigonometria. Clique e aprenda!
Conheça a lei dos cossenos, uma propriedade trigonométrica que pode ser aplicada em qualquer triângulo
Lei dos cossenos
Você conhece a Lei dos Cossenos? Aprenda a demonstrar essa importante propriedade e a aplicá-la para um triângulo qualquer.
Plano cartesiano
Conheça o que é o plano cartesiano e qual a sua função. Saiba também como montar e marcar pontos nele.
A razão é o quociente entre dois números, e a proporção é a igualdade entre duas razões
Razão e proporção
Você sabe no que consiste o conceito de razão e proporção? Acesse e descubra!
Razões trigonométricas
Veja quais são as principais razões trigonométricas e exemplos de problemas que cobram esse tipo de conteúdo. Conheça também os ângulos notáveis.
O círculo trigonométrico representa medidas de seno, cosseno e tangente
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
video icon
História
10 anos da Guerra Civil Síria
Assista a nossa videoaula para conhecer a história dos 10 anos da Guerra Civil Síria. Confira também no nosso canal outras informações sobre a Idade Contemporânea.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Inglês
Genitive Case
É hora de aperfeiçoar sua gramática na Língua Inglesa. Assista!
video icon
Videoaula Brasil Escola
Sociologia
Democracia racial
Você sabe o que significa democracia racial? Clique e nós te ensinamos!
video icon
Tigres Asiáticos
Geografia
Tigres Asiáticos
Assista à nossa videoaula sobre os Tigres Asiáticos, e conheça as razões do desenvolvimento rápido desses territórios.