Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Ângulos colaterais internos e externos

Ângulos colaterais internos e externos

Os ângulos colaterais internos e externos recebem esses nomes pela posição que ocupam com relação a retas paralelas e uma transversal.

Quando observamos os ângulos gerados por uma reta transversal a duas ou mais retas paralelas, percebemos que alguns deles possuem propriedades específicas. Nessa situação, é possível encontrar ângulos opostos pelo vértice, correspondentes, alternos internos, alternos externos, colaterais internos e colaterais externos.

As definições desses ângulos dependem da posição que ocupam com relação às retas paralelas e à transversal. Por esse motivo, discutiremos primeiro as regiões formadas por uma reta transversal a duas retas paralelas.

Regiões formadas por retas paralelas

Dizemos que duas retas são paralelas quando não existe nenhum ponto em comum entre elas. A região limitada por duas retas paralelas é chamada de região interna. Observe um exemplo:

A região externa, por sua vez, é toda a extensão que não é a região interna. Na imagem a seguir, veja os ângulos que estão na região externa de duas retas paralelas e que foram formados por uma reta transversal.

Ângulos colaterais internos

Dois ângulos são colaterais internos quando, na região interna de duas retas paralelas, estão do mesmo lado. Observe na imagem a seguir que os ângulos α e β estão do mesmo lado e na região interna e que o mesmo acontece com os ângulos θ e λ. Esses ângulos são colaterais internos.

Não pare agora... Tem mais depois da publicidade ;)

Ângulos colaterais externos

Ângulos colaterais externos estão do mesmo lado na região externa de duas retas paralelas. Na imagem a seguir, os ângulos α e β estão do mesmo lado na região externa e, por isso, são colaterais externos. O mesmo acontece com os ângulos θ e λ.

Propriedades

A propriedade dos ângulos colaterais internos e dos colaterais externos é a mesma:

Ângulos colaterais internos são suplementares, assim como os ângulos colaterais externos

Isso quer dizer que a soma de dois ângulos colaterais internos é sempre igual a 180° e que a soma de dois ângulos colaterais externos também é sempre 180°.

Exemplo:

Calcule o valor de cada um dos ângulos destacados a seguir.

Solução:

Sabendo que os ângulos colaterais externos e também os colaterais internos são suplementares, podemos escrever a seguinte equação:

2x + 4 + 16 x + 20 = 180

18x + 24 = 180

18x = 180 – 24

18x = 186

x = 156
      18

x = 8,65

Com o valor de x em mãos, basta substituí-lo nas expressões de cada ângulo:

2x + 4 =
2·8,65 + 4 =
17,3 + 4 =
21,3°

16x + 20 =
16·8,65 + 20 =
138,4 + 20 =
158,4°

Ângulos formados por uma reta transversal a duas retas paralelas
Ângulos formados por uma reta transversal a duas retas paralelas
Publicado por: Luiz Paulo Moreira Silva
Assista às nossas videoaulas
Assuntos relacionados
O hexágono regular é um exemplo de polígono
Polígonos
Aprenda o que são polígonos, descubra algumas das propriedades dessas figuras e entenda a diferença entre polígonos convexos e regulares.
Cálculo do coeficiente angular
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo, cálculo do coeficiente angular.
Condição de Alinhamento de Três Pontos
Verificando a condição de alinhamento de três pontos.
Inclinação e coeficiente angular de uma reta
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo
Medidas de Ângulos
Clique aqui e aprenda a transformar as unidades de medidas de ângulos.
Duas Retas Paralelas Cortadas por uma Transversal
Determinação de ângulos com base na semelhança de triângulos.
Equações: expressões que contêm números conhecidos, números desconhecidos e uma igualdade
Quatro passos para resolver equações do primeiro grau
Clique para aprender a resolver equações do primeiro grau em quatro passos!
Transferidor e alguns exemplos de ângulos
Ângulos complementares e suplementares
Aprenda o que são ângulos complementares e suplementares e veja alguns exemplos e definições importantes que envolvem esses conceitos.
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
Segmentos de reta paralelos nos trilhos de um trem
Paralelismo
Clique para aprender o que é paralelismo e as propriedades mais importantes relacionadas com essa posição relativa entre retas e planos.