Whatsapp icon Whatsapp

Cálculo da área a partir da decomposição de figuras geométricas

A partir da decomposição de figuras geométricas é possível calcular a área por meio das fórmulas das figuras obtidas.
Figuras que podem ser decompostas para facilitar o cálculo de sua área.
Figuras que podem ser decompostas para facilitar o cálculo de sua área.

As figuras geométricas que possuem apenas três ou quatro lados contam com fórmulas para determinar sua área de maneira prática. Entretanto, para a maioria das figuras geométricas não existe fórmula. Para essas é preciso realizar uma decomposição, isto é, cortar a figura a fim de obter outras que possuam fórmulas de área bem definidas. Depois disso, ao calcular a área de cada figura e somar seus resultados, obtém-se, então, a área da figura inicial.

Para calcular a área do pentágono a seguir, por exemplo, basta dividi-lo em duas figuras: o quadrilátero EFGI e o triângulo GIH. Em seguida, deve-se calcular as áreas de ambos separadamente e depois somar os resultados.

Pentágono


“Decomposição” de figuras

Se imaginamos que as figuras geométricas são feitas de papel, fica fácil perceber que, na separação em duas partes, a soma das áreas das figuras resultantes será igual à área da figura inicial. Observe o seguinte retângulo que possui 4 cm de largura e 2 cm de altura:

Retângulo

 Se esse retângulo fosse cortado ao meio, na vertical, ele seria transformado em dois quadrados com lado de 2 cm, como mostra a figura abaixo:

Quadrados

Note que a área desse retângulo é igual a 8 cm2 e que a área de cada quadrado corresponde a 4 cm2. A soma das áreas desses dois quadrados é exatamente igual à área do retângulo.

Esse conceito pode ser usado para calcular a área quando não existe fórmula específica para algumas figuras ou para facilitar os cálculos da área de todo tipo de figura.

Não pare agora... Tem mais depois da publicidade ;)

Exemplo – Qual a área da seguinte figura, sabendo que a parte curva é um semicírculo?

Quadrado com semicírculo

Observe que já existe um corte marcando a divisão em partes nessa figura. Como todos os ângulos desse quadrilátero são retos, todos os seus lados opostos são paralelos e congruentes. Assim, concluímos que o quadrilátero é um quadrado com lado igual a 12 cm. O diâmetro do semicírculo é um dos lados do quadrado, por isso, seu raio é a metade do lado, ou seja, r = 6 cm. Agora, basta calcular a área do quadrado e a área do semicírculo e somar as duas para encontrar a área da figura acima.

 

Área do quadrado:

A1 = l2

A1 = 122

A1 = 144 cm2

Área do semicírculo: um semicírculo é um círculo dividido ao meio. Então, basta dividir a área do círculo (de raio igual a 6 cm) por dois para obter a área desse semicírculo.

Área do círculo com raio igual a 6 cm:

A = π·r2

A = 3,14·62

A = 3,14·36

 

Área do semicírculo com raio igual a 6 cm:

A2 = 113,04
        2

A2 = 56,52 cm2

A área da figura é a soma A1 + A2:

144 + 56,52 = 200,52 cm2

 

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Cubo: sólido geométrico formado por faces quadradas
Quadrados
Clique e descubra as características dos quadrados e algumas de suas propriedades que são herdadas de outras figuras geométricas.
Retângulo, paralelogramo e trapézio
Quadriláteros
Aprenda o que são quadriláteros e as características e propriedades que os definem como paralelogramos, trapézios ou nenhum dos dois.
Imagem composta por diversos retângulos de tamanhos variados
Retângulos
Descubra o que é retângulo e algumas características básicas que ele possui, decorrentes de sua definição e da família de figuras a que eles pertencem.
Unidades de Medida de Área
Confira quais são as unidades de medida de área e como convertê-las.
Área de um quadrilátero na geometria analítica
Saiba como calcular a área de um quadrilátero no plano cartesiano
Essas superfícies possuem formato de paralelogramo e estão em perspectiva
Área do paralelogramo
Aprenda a calcular a área de cada tipo de paralelogramo e obtenha algumas propriedades básicas dessas figuras geométricas.
Área do triângulo
Calculando a área de um triângulo no plano cartesiano utilizando os conceitos de geometria analítica.
video icon
Matemática
Moda
Em estatística, temos alguns valores específicos chamados de medidas de tendência central. Nesta aula, falaremos sobre uma dessas medidas, a chamada moda.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Inglês
Genitive Case
É hora de aperfeiçoar sua gramática na Língua Inglesa. Assista!
video icon
Videoaula Brasil Escola
Sociologia
Democracia racial
Você sabe o que significa democracia racial? Clique e nós te ensinamos!
video icon
Tigres Asiáticos
Geografia
Tigres Asiáticos
Assista à nossa videoaula sobre os Tigres Asiáticos, e conheça as razões do desenvolvimento rápido desses territórios.