Whatsapp icon Whatsapp

Cálculo da área a partir da decomposição de figuras geométricas

A partir da decomposição de figuras geométricas é possível calcular a área por meio das fórmulas das figuras obtidas.
Figuras que podem ser decompostas para facilitar o cálculo de sua área.
Figuras que podem ser decompostas para facilitar o cálculo de sua área.

As figuras geométricas que possuem apenas três ou quatro lados contam com fórmulas para determinar sua área de maneira prática. Entretanto, para a maioria das figuras geométricas não existe fórmula. Para essas é preciso realizar uma decomposição, isto é, cortar a figura a fim de obter outras que possuam fórmulas de área bem definidas. Depois disso, ao calcular a área de cada figura e somar seus resultados, obtém-se, então, a área da figura inicial.

Para calcular a área do pentágono a seguir, por exemplo, basta dividi-lo em duas figuras: o quadrilátero EFGI e o triângulo GIH. Em seguida, deve-se calcular as áreas de ambos separadamente e depois somar os resultados.

Pentágono


“Decomposição” de figuras

Se imaginamos que as figuras geométricas são feitas de papel, fica fácil perceber que, na separação em duas partes, a soma das áreas das figuras resultantes será igual à área da figura inicial. Observe o seguinte retângulo que possui 4 cm de largura e 2 cm de altura:

Retângulo

 Se esse retângulo fosse cortado ao meio, na vertical, ele seria transformado em dois quadrados com lado de 2 cm, como mostra a figura abaixo:

Quadrados

Note que a área desse retângulo é igual a 8 cm2 e que a área de cada quadrado corresponde a 4 cm2. A soma das áreas desses dois quadrados é exatamente igual à área do retângulo.

Esse conceito pode ser usado para calcular a área quando não existe fórmula específica para algumas figuras ou para facilitar os cálculos da área de todo tipo de figura.

Não pare agora... Tem mais depois da publicidade ;)

Exemplo – Qual a área da seguinte figura, sabendo que a parte curva é um semicírculo?

Quadrado com semicírculo

Observe que já existe um corte marcando a divisão em partes nessa figura. Como todos os ângulos desse quadrilátero são retos, todos os seus lados opostos são paralelos e congruentes. Assim, concluímos que o quadrilátero é um quadrado com lado igual a 12 cm. O diâmetro do semicírculo é um dos lados do quadrado, por isso, seu raio é a metade do lado, ou seja, r = 6 cm. Agora, basta calcular a área do quadrado e a área do semicírculo e somar as duas para encontrar a área da figura acima.

 

Área do quadrado:

A1 = l2

A1 = 122

A1 = 144 cm2

Área do semicírculo: um semicírculo é um círculo dividido ao meio. Então, basta dividir a área do círculo (de raio igual a 6 cm) por dois para obter a área desse semicírculo.

Área do círculo com raio igual a 6 cm:

A = π·r2

A = 3,14·62

A = 3,14·36

 

Área do semicírculo com raio igual a 6 cm:

A2 = 113,04
        2

A2 = 56,52 cm2

A área da figura é a soma A1 + A2:

144 + 56,52 = 200,52 cm2

 

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Quadrado
Clique aqui e descubra o que é um quadrado. Conheça seus elementos e propriedades e aprenda como calcular seu perímetro e sua área.
Quadriláteros
Aprenda o que são quadriláteros e as características e propriedades que os definem como paralelogramos, trapézios ou nenhum dos dois.
Retângulos
Descubra o que é retângulo e algumas características básicas que ele possui, decorrentes de sua definição e da família de figuras a que eles pertencem.
Unidades de Medida de Área
Confira quais são as unidades de medida de área e como convertê-las.
Área de um quadrilátero na geometria analítica
Saiba como calcular a área de um quadrilátero no plano cartesiano
Área do paralelogramo
Aprenda a calcular a área de cada tipo de paralelogramo e obtenha algumas propriedades básicas dessas figuras geométricas.
Área do triângulo retângulo
Clique aqui, saiba qual é a fórmula para calcular a área do triângulo retângulo e veja como calculá-la.
video icon
"Os 8 maiores mitos da redação" escrito sobre ilustração de nuvens escuras
Português
Os 8 maiores mitos da redação
Você conhece os principais mitos que circulam a respeito da redação? Nesta aula, o prof. Guga Valente vai mostrar e explicar os principais deles.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
videoaula brasil escola
Português
Redação
Entenda como realizar argumento por causa e consequência com a nossa aula.
video icon
videoaula brasil escola
Física
Aceleração centrípeta
Qual ação é exercida sobre o vetor velocidade? Descubra!
video icon
AI-5
História
AI-5
Que tal ficar por dentro de um dos Atos Institucionais mais famosos?