Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Cálculo da área a partir da decomposição de figuras geométricas

Cálculo da área a partir da decomposição de figuras geométricas

A partir da decomposição de figuras geométricas é possível calcular a área por meio das fórmulas das figuras obtidas.

As figuras geométricas que possuem apenas três ou quatro lados contam com fórmulas para determinar sua área de maneira prática. Entretanto, para a maioria das figuras geométricas não existe fórmula. Para essas é preciso realizar uma decomposição, isto é, cortar a figura a fim de obter outras que possuam fórmulas de área bem definidas. Depois disso, ao calcular a área de cada figura e somar seus resultados, obtém-se, então, a área da figura inicial.

Para calcular a área do pentágono a seguir, por exemplo, basta dividi-lo em duas figuras: o quadrilátero EFGI e o triângulo GIH. Em seguida, deve-se calcular as áreas de ambos separadamente e depois somar os resultados.

Pentágono


“Decomposição” de figuras

Se imaginamos que as figuras geométricas são feitas de papel, fica fácil perceber que, na separação em duas partes, a soma das áreas das figuras resultantes será igual à área da figura inicial. Observe o seguinte retângulo que possui 4 cm de largura e 2 cm de altura:

Retângulo

 Se esse retângulo fosse cortado ao meio, na vertical, ele seria transformado em dois quadrados com lado de 2 cm, como mostra a figura abaixo:

Quadrados

Note que a área desse retângulo é igual a 8 cm2 e que a área de cada quadrado corresponde a 4 cm2. A soma das áreas desses dois quadrados é exatamente igual à área do retângulo.

Esse conceito pode ser usado para calcular a área quando não existe fórmula específica para algumas figuras ou para facilitar os cálculos da área de todo tipo de figura.

Não pare agora... Tem mais depois da publicidade ;)

Exemplo – Qual a área da seguinte figura, sabendo que a parte curva é um semicírculo?

Quadrado com semicírculo

Observe que já existe um corte marcando a divisão em partes nessa figura. Como todos os ângulos desse quadrilátero são retos, todos os seus lados opostos são paralelos e congruentes. Assim, concluímos que o quadrilátero é um quadrado com lado igual a 12 cm. O diâmetro do semicírculo é um dos lados do quadrado, por isso, seu raio é a metade do lado, ou seja, r = 6 cm. Agora, basta calcular a área do quadrado e a área do semicírculo e somar as duas para encontrar a área da figura acima.

 

Área do quadrado:

A1 = l2

A1 = 122

A1 = 144 cm2

Área do semicírculo: um semicírculo é um círculo dividido ao meio. Então, basta dividir a área do círculo (de raio igual a 6 cm) por dois para obter a área desse semicírculo.

Área do círculo com raio igual a 6 cm:

A = π·r2

A = 3,14·62

A = 3,14·36

 

Área do semicírculo com raio igual a 6 cm:

A2 = 113,04
        2

A2 = 56,52 cm2

A área da figura é a soma A1 + A2:

144 + 56,52 = 200,52 cm2

 

Figuras que podem ser decompostas para facilitar o cálculo de sua área.
Figuras que podem ser decompostas para facilitar o cálculo de sua área.
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Lista de Exercícios

Questão 1

Calcule a medida da área do pentágono na figura a seguir, considerando as medidas que foram colocadas nela.A

a) 750 cm2

b) 1500 cm2

c) 2250 cm2

d) 3000 cm2

e) 9000 cm2

 

Questão 2

Qual é a área da figura a seguir, sabendo que a distância entre o ponto E e a base da figura CD é igual a 10 cm?

a) 100 cm2

b) 187 cm2

c) 287 cm2

d) 387 cm2

e) 487 cm2

Mais Questões
Assuntos relacionados
Unidades de Medida de Área
Confira quais são as unidades de medida de área e como convertê-las.
Área do triângulo
Calculando a área de um triângulo no plano cartesiano utilizando os conceitos de geometria analítica.
Área de um quadrilátero na geometria analítica
Saiba como calcular a área de um quadrilátero no plano cartesiano
Imagem composta por diversos retângulos de tamanhos variados
Retângulos
Descubra o que é retângulo e algumas características básicas que ele possui, decorrentes de sua definição e da família de figuras a que eles pertencem.
Essas superfícies possuem formato de paralelogramo e estão em perspectiva
Área do paralelogramo
Aprenda a calcular a área de cada tipo de paralelogramo e obtenha algumas propriedades básicas dessas figuras geométricas.
Cubo: sólido geométrico formado por faces quadradas
Quadrados
Clique e descubra as características dos quadrados e algumas de suas propriedades que são herdadas de outras figuras geométricas.
Retângulo, paralelogramo e trapézio
Quadriláteros
Aprenda o que são quadriláteros e as características e propriedades que os definem como paralelogramos, trapézios ou nenhum dos dois.