Whatsapp icon Whatsapp

Cônicas

Cônicas são as figuras geométricas planas que podem ser encontradas na intersecção de um plano com um cone, obtido pela revolução de uma reta.
Cônicas: intersecções entre um plano e um cone
Cônicas: intersecções entre um plano e um cone

As cônicas são figuras geométricas formadas pela interseção de um plano com um cone duplo de revolução. São elas: elipses, parábolas e hipérboles. Um sólido de revolução é obtido a partir da rotação de uma figura geométrica sobre um eixo de rotação. O cone de revolução é resultado do giro de um triângulo retângulo, tendo um de seus catetos como eixo, como mostra a figura a seguir:
 

Após um giro de 360°, o “rastro” deixado por esse triângulo terá a forma de cone, exatamente como mostra a figura a seguir:

Para encontrar as cônicas, entretanto, precisamos de cone duplo de revolução, que é obtido pelo giro de uma reta sobre um círculo. Na imagem a seguir, o eixo de revolução dessa reta é o segmento AB.

A figura obtida nesse processo é o cone duplo de revolução:

Cônicas: elipse

Uma elipse é uma figura geométrica plana definida da seguinte maneira: dados dois pontos F1 e F2, chamados de focos, que pertencem a um único plano β, e o comprimento do segmento F1F2 = 2c. O conjunto de todos os pontos P, cuja soma da distância entre P e F1 com a distância entre P e F2 é igual a uma constante 2a, é chamado de elipse. (2a < 2c).

Em outras palavras, se P pertence a uma elipse, então dPF1 + dPF2 = 2a.

A imagem a seguir mostra um exemplo de elipse:

As elipses possuem duas equações reduzidas. A primeira, para o caso em que os pontos F1 e F2 estão sobre o eixo x de um plano cartesiano, é:

Não pare agora... Tem mais depois da publicidade ;)

x2 + y2 = 1
a2 b2       

Na segunda, para os casos em que os pontos F1 e F2 estão sobre o eixo y de um plano cartesiano, temos:

y2 + x2 = 1
a2 b2       

Cônicas: hipérbole

Uma hipérbole é um conjunto de pontos que pode ser definido da seguinte maneira: dados dois pontos F1 e F2 (chamados de focos) do plano β, sendo 2c a distância entre esses pontos, a hipérbole é o conjunto de pontos P do plano β no qual a diferença entre PF1 e PF2 é sempre a igual a uma constante 2a. Essa diferença, porém, somente é avaliada em módulo.

Dessa forma, P é um ponto da hipérbole se dPF1 – dPF2 = 2a.

Veja a seguir um exemplo de hipérbole:

A hipérbole também possui dois tipos de equação reduzida. Para os casos em que F1 e F2 estão sobre o eixo x, temos:

x2 – y2 = 1
a2 b2        

Nos casos em que F1 e F2 estão sobre o eixo y, podemos usar a seguinte equação:

y2 – x2 = 1
a2 b2       

Cônicas: parábola

Dada uma reta r e um ponto F que não pertence a essa reta, mas ambos pertencentes ao mesmo plano, e sendo k a distância entre esse ponto e essa reta, uma parábola é um conjunto de pontos no qual a distância até F é igual à distância até r.

Portanto, P pertence à parábola se, e somente se, d(P, F) = d(P, r).

A parábola também possui equações reduzidas. Se a parábola apresenta foco F no eixo x, é usada a seguinte equação:

y2 = 2kx

No caso de a parábola possuir foco F no eixo y, temos:

x2 = 2ky

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Cone
Cone
Entenda o que é um cone, conheça a sua planificação e suas classificações, além de aprender a calcular a área total e o volume desse sólido geométrico.
Exemplos de círculos coloridos
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
A distância entre dois pontos diz respeito ao segmento de reta que liga dois pontos em um plano cartesiano.
Distância entre dois pontos
Entenda qual é o segmento que representa a distância entre dois pontos no plano cartesiano e conheça sua fórmula para calcular essa distância.
O compasso é um objeto usado para desenhar círculos e circunferências
Elementos do círculo e da circunferência
Clique para aprender os elementos do círculo e da circunferência e obtenha um exemplo de cada uma dessas partes.
Elipse
Aprenda o que é uma elipse e saiba quais são seus elementos. Veja qual é a equação dessa figura assim como sua fórmula para o cálculo da área.
Podemos encontrar a equação geral da reta representada no plano cartesiano.
Equação geral da reta
Conheça a equação geral da reta e aprenda a representá-la graficamente. Confira ainda exercícios resolvidos sobre o assunto.
A hipérbole é classificada como cônica por ser obtida a partir de uma determinada secção do cone.
Hipérbole
Entenda o que é hipérbole e conheça suas principais propriedades. Aprenda sua equação geral e sua equação reduzida.
Sólidos geométricos espaciais sobre um plano
Noções primitivas de Geometria: ponto, reta, plano e espaço
Clique para saber mais sobre as noções primitivas de Geometria (reta, ponto, plano e espaço), além de conhecer suas propriedades.
As parábolas são figuras cuja distância de um de seus pontos até o foco é igual à distância desse mesmo ponto até a diretriz
Parábolas
Clique e aprenda o que são parábolas para a Geometria Analítica, conheça seus elementos e saiba encontrar as equações reduzidas dessa figura.
Perímetro do Círculo
Calculando o perímetro de uma circunferência em função da medida do raio.
Plano cartesiano
Conheça o que é o plano cartesiano e qual a sua função. Saiba também como montar e marcar pontos nele.
Segmento de reta que começa em A e vai até B
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Pitágoras: Filósofo e Matemático
Teorema de Pitágoras: Altura e Área do Triângulo Equilátero
Importantes aplicações do Teorema de Pitágoras.
O tronco de um cone é um sólido geométrico formado pela parte inferior de um cone após ser seccionado de forma paralela à base.
Tronco de cone
Entenda o que é tronco de um cone e saiba como calcular seu volume e sua área total. Conheça os elementos desse sólido geométrico e resolva exercícios sobre o tema.
Ilustração de um tronco de cone cinza em um fundo escuro.
Volume do tronco de cone
Clique aqui e saiba como calcular o volume do tronco de cone com base em sua fórmula.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.