Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Potenciação
  4. Propriedades das potências

Propriedades das potências

As propriedades das potências são aplicadas no estudo de potenciação de números reais. Essas propriedades são técnicas desenvolvidas com o objetivo de facilitar as operações entre os números que possuem expoentes, sendo muito úteis nas áreas de estudos da Física, Química e Biologia, além de serem também aplicadas constantemente no trabalho com notações científicas.

Existem várias propriedades aplicadas quando temos divisão ou multiplicação de potências de mesma base e potência de potência. Também há casos particulares estudados, como as potências de expoente um, expoente zero e expoente fracionário.

Leia também: Notação científica – o uso de potências de base dez para representar números

1ª propriedade – Multiplicação de potências de mesma base

Para simplificar a multiplicação de potências de mesma base, conserva-se a base e somam-se os expoentes.

an · am= an+m

Exemplo 1:

54· 5² = 5·5·5·5·5·5 = 56

Logo, temos que:

54· 5² = 54+2=56

Se necessário, é possível encontrar a potência de 56 realizando a multiplicação sucessiva de 5 por ele mesmo 6 vezes, porém, no uso da propriedade, o interesse é representar a multiplicação de duas ou mais potências como uma potência só.

Exemplo 2:

· 25 · 22=23+5+2=210

2ª propriedade – Divisão de potências de mesma base

Na divisão de potências de mesma base, conservamos a base e subtraímos o expoente do numerador pelo expoente do denominador.

an : am= an - m

Exemplo 1:

Logo, temos que:

28 : 25 = 28-5 = 2³

Note que realizar a simplificação é bem mais prático do que resolver essas potências de forma separada e depois fazer a divisão. Como ressaltado anteriormente, a intenção das propriedades é simplificar e facilitar as contas com potências.

Exemplo 2:

Não pare agora... Tem mais depois da publicidade ;)

3ª propriedade – Potência de potência

Ao calcular a potência de uma potência, podemos conservar a base e multiplicar os expoentes.

(am)n=am · n

Exemplo 1:

(5³)² = (5 · 5 · 5)² = (5 · 5 · 5) · (5 · 5 · 5) = 56

Logo, temos que:

(5³)² =53 · 2 = 56

Assim como as duas propriedades anteriores, a aplicação dessa propriedade ajuda a realizar essa operação de forma mais rápida

 

Exemplo 2

 

(45)-3 = 45 · (-3) = 4-15

4ª propriedade – Potência de um produto

Dado um produto de dois números reais elevados a um expoente, podemos elevar cada um dos fatores a esse expoente.

(a · b)n = an · bn

Exemplo:

 

(2 · 4)3=(2 · 4)(2 · 4)(2 · 4) = 2 · 2 · 2 · 4 · 4 · 4 = 23 · 43

Logo, temos que:

(2 · 4)3 = 23 · 43

5ª propriedade – Potência do quociente

Conhecida como potência de um quociente e análoga à propriedade anterior, sempre que houver uma potência de um quociente, podemos calcular a potência do dividendo e a potência do divisor.

(a : b)n = an : bn

Exemplo:

(6 : 4)² = (6 : 4) · (6 : 4) = 6² · 4²

Logo, temos que:

(6 : 4)² =6² : 4²

As propriedades de potências ajudam bastante na hora de resolver problemas com potências.
As propriedades de potências ajudam bastante na hora de resolver problemas com potências.

Casos particulares de potência

Existem alguns casos particulares de potência que merecem ser ressaltados, já que conhecer cada um deles é tão importante quanto o domínio das próprias propriedades. São eles:

  • potência de uma fração;

  • potência de expoente igual a 0;

  • potência de expoente igual a 1;

  • potência com o expoente negativo;

  • potência com expoente fracionário.

Potência unitária

Todo número elevado a um é ele mesmo.

a¹ = a

Exemplos:

a) 123¹ = 123

b) 0,54¹ = 054

Potência de expoente zero

Todo número diferente de zero elevado a zero é igual a um. Nesse caso existe uma restrição para a base, pois a potência 00 é uma indeterminação, ou seja, não possui uma resposta nos números reais, assim como a divisão do número zero.

a 0 = 1

Exemplos:

100= 1
0,750= 1
1923923120 = 1

Potência de uma fração

Como consequência da propriedade da potência de um quociente, lembrando que a fração é uma divisão, ao calcular uma potência de uma fração, podemos separar a potência desta forma:

Exemplos:

Leia também: Potências com expoente fracionário e decimal

Potência com um expoente negativo

Para calcular a potência de um expoente negativo, escrevemos o inverso da base e trocamos o sinal do expoente.

Quando a base da potência for um número inteiro, basta escrevermos um sobre a base.

Exemplo:

Quando a base for um número decimal, é necessário realizar a sua representação como uma fração. Quando a base é uma fração, para encontrar o inverso de uma fração, invertemos o numerador com o denominador.

Exemplo:

Potência com expoente fracionário

Quando o expoente é fracionário, podemos transformar essa potência em uma radiciação.

Exemplo:

Leia também: Resolvendo raízes por meio da fatoração

Exercícios resolvidos

1) Simplificando a expressão (a3 · b-7 · a2) : (a2 · b-4)2, encontraremos:

a) a/b

b) ab

c) b

d) a²b

Resolução:

Letra B. Usando as propriedades de multiplicação de potência de mesma base, potência de potência e divisão de potência de mesma base, temos que:

(a³ · b-7 · a²) : (a² · b-4
(a3+2 · b-5 ) : (a2.2 · b-4.2)
(a5 · b-7 ) : (a4 · b-8)
a5-4 · b-7 - (-8)
a1 · b-7 +8
a1 · b1
a .b

02) (IFG) O valor da expressão aritmética abaixo é equivalente a:

a) 8/17

b) -8/17

c) 16/17

d) -16/17

Resolução:

Letra D.

Resolvendo primeiro o numerador, temos que:

Agora vamos resolver o denominador:

Como temos uma divisão do numerador pelo denominador, vamos multiplicar pelo inverso da segunda fração:

Publicado por: Raul Rodrigues de Oliveira
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

Simplifique a expressão:

Questão 2

Supondo que x ≠ 0 e y ≠ 0, simplifique a expressão (x-2)1 + (y2)-1 + 2(xy1)-1:

Mais Questões
Assuntos relacionados
Como se lê uma potência
Potência, Potenciação, Definição de Potência, representação de potência, Base, Expoente, multiplicação de fatores iguais, multiplicação, Produto, o que é potência, Fatores iguais, leitura de uma potência.
Há algumas dicas básicas para resolver potenciação de monômios
Potenciação de monômios
Clique para entender a potenciação de monômios e as propriedades necessárias para resolver essa operação.
Radiciação
Propriedades da radiciação; raiz n-ésima de um número
Potência fracionária
Transformando números em radicais em números com potências fracionárias. Compreendendo como escrever uma radiciação em forma de potência fracionária.
Você sabe qual é o resultado dessa potência? Aprenda a calcular essa e outras potências com expoente negativo!
Potências com expoente negativo
Você sabe como calcular potências com expoente negativo? Confira nossas dicas e calcule qualquer potência com expoente inteiro!
Veja como resolver essas potências transformando-as em raízes!
Potências com expoente fracionário e decimal
Você sabe como resolver potências com expoente fracionário e decimal? Aprenda aqui a relação existente entre essas potências e as raízes!
As potências de base dez são utilizadas para representar números muito grandes ou muito pequenos
Potências na base dez
Informe-se sobre como utilizar as potências de base dez para escrever um número como notação científica.
Ter o hábito da leitura e dominar Matemática Básica são algumas das dicas para resolver exercícios de Física
Dicas para resolver exercícios de Física
Você tem dificuldade com Física? Clique aqui e veja algumas dicas para resolver exercícios e se dar bem nas provas!
Frações algébricas possuem pelo menos uma incógnita no denominador
Frações algébricas
Clique para descobrir o que são frações algébricas, as operações que podem ser realizadas com elas e obter exemplos.
A fração algébrica possui uma incógnita no denominador
Potenciação de frações algébricas
Clique para aprender a maneira correta de realizar potenciação de frações algébricas a partir das propriedades de potência envolvidas nesse cálculo.
A segunda fórmula de Moivre é usada para encontrar raízes de números complexos
Segunda fórmula de Moivre
Clique e aprenda a segunda fórmula de Moivre, que é usada para encontrar raízes de números complexos escritos na forma polar ou trigonométrica.
Função logarítmica
Conheça a definição da função logarítmica, aprenda a construir seu gráfico e a identificar se ele será crescente ou decrescente. Resolva os exercícios sobre o tema.