Argumento de um número complexo

Para encontrar o argumento de um número complexo, é necessário conhecer a sua representação geométrica. Ao realizar a representação de um número complexo no plano de Argand-Gauss, conhecemos como argumento o ângulo formado entre o eixo horizontal e o segmento de reta OZ, sendo O a origem e Z o ponto de coordenadas (a,b).

O argumento de um ângulo é calculado a partir das razões trigonométricas seno e cosseno. Esse cálculo é útil para que seja possível escrever o número complexo em sua forma trigonométrica.

Leia também: Números complexos: o que são e como calculá-los?

Representação de um número complexo no plano de Argand-Gauss.

O que é o argumento de um número complexo?

O estudo de um número complexo em sua forma geométrica nos possibilita o desenvolvimento de conceitos importantes para o estudo desses números. Ao realizar a representação geométrica de um número complexo z = a+bi, podemos representar esse número por um ponto Z (a,b) no plano de Argand-Gauss, conhecido também como plano complexo.

O segmento de reta OZ, que sai da origem do plano O e vai de encontro ao ponto Z, forma um ângulo com o eixo horizontal. Esse ângulo formado entre o segmento OZ e o eixo horizontal é conhecido como argumento de um número complexo, sendo denotado por arg(z). O argumento possibilita o desenvolvimento da representação trigonométrica de um número complexo, facilitando estudos avançados nessa área.

arg(z) = θ

Como o argumento é o ângulo θ, ele pode ser dado em graus ou em radianos.

Módulo de um número complexo

Para conseguirmos calcular o argumento de um número complexo, precisamos compreender o que é o módulo de um número complexo.

O seguimento OZ recebe o nome de módulo, representado por |z|, assim como ocorre no conjunto dos números reais. O módulo nada mais é do que a distância em que o número se encontra em relação à origem. A diferença é que os números reais são representados na reta real, porém, em se tratando dos números complexos, eles são representados por pontos em um plano.

Para calcular o módulo de um número complexo, recorremos ao teorema de Pitágoras. Note que o segmento OZ é a hipotenusa de um triângulo retângulo de catetos medindo a e b. Sendo assim, o módulo de z pode ser calculado por:

Leia também: Representação geométrica da adição de números complexos

Como calcular o argumento de um número complexo?

Para calcular o argumento de um número complexo, nós recorremos à trigonometria em um triângulo retângulo. Ainda que não conheçamos o valor do ângulo, é possível calcular o seno e o cosseno desse ângulo conhecendo os valores de a e b.

Em provas de vestibulares quando se cobra esse conteúdo, o ângulo geralmente é um ângulo notável, ou seja, de 30º, 45º ou 60º, os quais têm os valores do seno e do cosseno conhecidos.

Pode ser também que a questão envolva um ângulo simétrico a esses ângulos, caso em que também é possível realizar a sua identificação. Em um último caso, pode ser que realmente seja um ângulo que não conhecemos o valor do seno e do cosseno, sendo necessária a consulta em uma tabela com os valores do seno e do cosseno para todos os ângulos de 0º a 90º.

Exemplo 1

Qual é o argumento do número complexo z = 1 + i?

Resolução

Sabemos que a = 1 e b = 1, então:

Agora é possível calcular o seno e o cosseno:

Queremos encontrar o ângulo que possui seno e cosseno correspondentes aos valores encontrados. Consultando a tabela trigonométrica dos ângulos notáveis, sabendo que θ pode ser medido em graus ou radianos, temos:

Leia também: 2ª fórmula de Moivre – forma de achar as raízes dos números complexos na forma trigonométrica

Exercícios resolvidos

1) Calcule o valor de arg(z) sabendo que:

a) 30º

b) 45º

c) 60º

d) 90º

e) 120º

Resolução

1º passo: calcular o módulo de z.

2º passo: calcular seno e cosseno do ângulo.

Resposta: alternativa C.

2) Um número complexo possui arg(z) = 180º e módulo igual a 4. A forma algébrica desse número é:

a) -4i

b) 4

c) 1+4i

d) 1 - 4i

e) 2 - 2i

Resolução:

Sabemos que |z| = 4 e que sen 180º = 0 e cos 180º 0 = -1, então:

Como a = 0 e b = -4, temos que:

z = 0 – 4i

z = – 4i

Resposta: alternativa A.

Publicado por Raul Rodrigues de Oliveira
Matemática do Zero
Matemática do Zero | Moda e Mediana
Nessa aula veremos como calcular a moda e a mediana de uma amostra. Mosrarei que a moda é o elemento que possui maior frequência e que uma amostra pode ter mais de uma moda ou não ter moda. Posteriormente, veremos que para calcular a mediana devemos montar o hall (organizar em ordem a amostra) e verificar a quantidade de termos dessa amostra.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos