Whatsapp icon Whatsapp

Números complexos

Os números complexos constituem a expansão do conjunto dos números reais e foram criados para resolver equações com raiz quadrada de um número negativo.
Simbolo usado para representar o conjunto dos números complexos
Simbolo usado para representar o conjunto dos números complexos

O conjunto dos números complexos foi criado com o intuito de resolver equações que envolvem raízes de números negativos. Como exemplo, se utilizarmos a fórmula de Bháskara na equação x2 – 6x + 10 = 0, teremos:

Δ = b2 – 4·a·c

Δ = (– 6)2 – 4·1·10

Δ = 36 – 40

Δ = – 4

Como bem sabemos, é impossível que uma equação do segundo grau que tem Δ negativo possua solução real. Entretanto, considerando o conjunto dos números complexos, podemos solucionar essa equação. Na realidade, foi justamente por isso que foi criado esse conjunto. Assim, substituindo os valores do exemplo acima na fórmula de Bháskara, teremos:

x = – b ± √∆
        2a

x = – (– 6) ± √(–4)
         2

x = 6 ± √(–4)
      2

Observe que não é possível encontrar √(– 4) dentro do conjunto dos números reais, pois 2·2 = 4 e (– 2)(– 2) = 4. A sugestão do matemático italiano Rafael Bombelli foi considerar que √(–4) = √(–1·4) = 2√– 1 é uma forma de solucionar essa equação. E, após isso, deve-se trocar √–1 por i. Portanto, as soluções dessa equação seriam:

Esse tipo de número foi chamado de número complexo.


Forma algébrica

Os números complexos podem ser apresentados de algumas maneiras distintas. A mais comum delas é a forma algébrica, que é usada para apresentar as soluções desse tipo de equação. Essa forma é definida da seguinte maneira: O número Z é um número complexo se:

Z = a + bi,

Em que a e b são números reais e i = √–1.

Os números complexos são divididos em duas partes: a é a parte real do número e b é a sua parte imaginária. Observe que é possível obter todo o conjunto dos números reais fazendo uso apenas da parte real de Z. Isso significa que o conjunto dos números complexos contém o conjunto dos números reais.

Operações entre números complexos

Não pare agora... Tem mais depois da publicidade ;)

Como se trata de um conjunto numérico, é possível definir todas as operações matemáticas envolvendo números complexos.

A adição entre números complexos deve ser feita apenas entre “termos semelhantes”, ou seja, parte real deve ser somada apenas à parte real, e parte imaginária apenas com parte imaginária. Essa mesma regra também é válida para a subtração.

Já a multiplicação entre números complexos deve ser feita por meio da propriedade distributiva da multiplicação. Assim, dados os números complexos z = a + bi e y = c + di, o produto zy será:

(a + bi)(c + di)

ac + adi + bci + bdi2

ac + adi + bci – bd (pois i = √–1)

ac – bd + (ad + bc)i

A divisão entre números complexos, em sua forma algébrica, é feita multiplicando divisor e dividendo pelo conjugado do dividendo.

Forma polar

Os números complexos podem ser escritos de outras maneiras que não a forma algébrica. A forma polar envolve os conceitos da trigonometria, e o número complexo z, em sua forma polar ou trigonométrica, é definido como:

z = p(cosθ + isenθ)

Para compreender os elementos presentes nessa forma, é preciso conhecer algumas informações.

1 – Todo número complexo representa um vetor no plano de Argand-Gauss (plano cartesiano em que o eixo x é o eixo real e o eixo y é o eixo imaginário). Veja na imagem a seguir o número complexo z = a + bi.

O ângulo formado entre o eixo real (eixo x) e o vetor do número complexo z é θ e o comprimento desse vetor é p.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Adição e subtração de números complexos
Números complexos, Conjunto dos números complexos, Operações com números complexos, Forma algébrica de um número complexo, Representação de um número complexo, adição de números complexos, subtração de números complexos.
Aplicação dos Números Complexos
Resolvendo equações do 2º grau no conjunto dos números complexos.
Conjugado
Definição do conjugado e sua utilização nas operações de números complexos.
Divisão de Números Complexos
Quociente entre números complexos.
Forma Trigonométrica ou Polar de um Número Complexo
Escrevendo um número complexo na forma trigonométrica
Multiplicação de Números Complexos
Forma multiplicativa dos números complexos.
O módulo do número complexo
Definição do módulo de um número complexo. Aplicando o módulo de um número complexo para determinar subconjuntos do conjunto complexo.
O oposto do número complexo
Determinando o número oposto de um número complexo. Como diferenciar as definições do número oposto e do número conjugado de um número complexo.
Operações com números complexos na forma polar ou trigonométrica
Multiplicação, divisão e potenciação na forma trigonométrica
Plano de Argand-Gauss (plano complexo)
Saiba o que é o plano de Argand-Gauss, aprenda a representar números complexos no plano, calcule o módulo e argumento de um número complexo.
Potência i
Potências de uma unidade imaginária.
Propriedades do conjugado e do módulo de números complexos
Clique para aprender mais sobre as propriedades do conjugado e do módulo de números complexos por meio de suas demonstrações!
video icon
Escrito"Cigarro eletrônico faz mal mesmo?" sobre a fumaça presente em uma ilustração de cigarro eletrônico.
Química
Cigarro eletrônico, faz mal assim mesmo?
Dispositivos amplamente difundidos hoje e sem relatos concretos sobre os seus malefícios são os cigarros eletrônicos. Por mais que não saibamos de maneira clara o quão fazem mal a saúde é claro e evidente que não fazem bem! Vamos entender o seu funcionamento e desvendar o motivo pelo qual com certeza ele fazem mal a saúde.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.