Whatsapp icon Whatsapp

Movimento harmônico simples

O movimento harmônico simples (MHS) é aquele em que um corpo oscila em torno de uma posição de equilíbrio devido à ação de uma força restauradora, cuja natureza pode ser elástica, gravitacional, elétrica, entre outras. No MHS, não há forças dissipativas, como as forças de atrito e arraste, e, por isso, a energia mecânica total do sistema é conservada.

Em razão de sua simplicidade, o movimento harmônico simples é um modelo físico que pode ser utilizado para investigar diversos sistemas mais complexos onde há forças restauradoras, como nas interações elétricas dos átomos e nas atrações gravitacionais entre planetas.

Veja também: Movimento acelerado e retardado

Resumo sobre o MHS

O MHS é resultado da ação de uma força que tende a manter alguma partícula, ou sistema de partículas, em uma posição de equilíbrio, tal como acontece com uma mola quando esticada ou comprimida, que fica sujeita à ação de uma força elástica. Nesse tipo de movimento, a soma da energia cinética com a energia potencial é sempre constante, por isso dizemos que há conservação da energia mecânica.

Em uma situação ideal, o oscilador massa-mola mostrado desenvolve um MHS.
Em uma situação ideal, o oscilador massa-mola mostrado desenvolve um MHS.

Chamamos de frequência o número de oscilações realizadas por um sistema em MHS que são concluídas a cada segundo. O período, por sua vez, é calculado como o inverso da frequência e é igual ao tempo gasto para que o sistema em MHS complete uma oscilação. As unidades de medida da frequência e do período do MHS são, respectivamente, o hertz (Hz) e o segundo (s). As fórmulas usadas para calcular essas grandezas são as seguintes:

f – frequência (Hz)

T – período (s)

n – número de oscilações

Δt – intervalo de tempo (s)

Além das grandezas frequência e período, o MHS é definido a partir de grandezas angulares. Tais grandezas permitem-nos saber em qual posição uma partícula em MHS encontra-se, bem como precisar quais são suas medidas de energia cinética e potencial naquele instante. A mais importante das grandezas angulares relacionadas ao MHS é a frequência angular, também conhecida como velocidade angular ou pulsação.

ω – frequência angular (rad/s)

A frequência angular tem a dimensão de rad/s. Os radianos são uma das diferentes formas de se definir os ângulos no círculo trigonométrico. Sabe-se que uma volta completa ao longo do círculo trigonométrico corresponde a 360º, que, por sua vez, correspondem a 2π radianos.

No caso do MHS, o círculo trigonométrico serve como uma referência para uma oscilação completa. Por exemplo, ao comprimir uma mola e soltá-la, temos uma oscilação completa quando ela tiver voltado à posição inicial – nesse caso dizemos que ela percorreu um deslocamento angular igual a 2π radianos.

Não pare agora... Tem mais depois da publicidade ;)

A frequência angular também pode ser calculada em função de outros parâmetros, de acordo com o tipo de oscilador harmônico. Dentre todos os possíveis tipos de osciladores, os que mais se destacam por sua importância são o pêndulo simples e o oscilador massa-mola. As fórmulas utilizadas para calcular a frequência angular nesses casos de movimento harmônico simples são mostradas a seguir.

Veja também: Pêndulo simples – tudo sobre esse sistema mecânico!

Fórmulas do movimento harmônico simples

As fórmulas mais importantes do movimento harmônico simples são as equações horárias da posição, velocidade e aceleração. Essas equações nos permitem determinar a posição, a velocidade ou a aceleração de um móvel em MHS em determinado instante de tempo.

Nas fórmulas acima, a amplitude (A) equivale à máxima distância que uma partícula pode chegar em relação à sua posição de equilíbrio. A variável t refere-se ao instante de tempo, e Φ0 é chamado de fase inicial e está relacionado com a posição em que o sistema iniciou o movimento.

Além das fórmulas já citadas, há também as fórmulas que são usadas para calcular o período de oscilação e a frequência do pêndulo simples e também do oscilador massa-mola, sendo elas:

Veja também: Principais conceitos de Ondulatória

Exercícios resolvidos sobre movimento harmônico simples

Questão 1 - Calcule a frequência angular de uma partícula que desenvolve um movimento harmônico simples sabendo que o período desse movimento equivale a 0,5 s.

a) π/2 rad/s

b) π rad/s

c) 4π rad/s

d) 3π/2 rad/s

Gabarito: letra C.

Resolução:

Para resolver o exercício e calcular a frequência angular da partícula, precisamos usar a fórmula que relaciona essa grandeza com o período do movimento.

De acordo com o cálculo feito, a frequência angular do movimento é igual a 4π rad/s.

Questão 2 - Uma partícula descreve um movimento harmônico simples de amplitude igual a 4 cm. Sabendo que a fase inicial do movimento é igual a 0 e que sua frequência angular é igual a π rad/s, determine a posição dessa partícula no instante t = 0,5 s.

a) 2 cm

b) 5 cm

c) 0 cm

d) 4 cm

Gabarito: letra C.

Resolução:

Para descobrirmos a posição do móvel, é necessário usar a equação horária da posição no MHS; fazendo isso, devemos resolver o seguinte cálculo:

Uma vez que o cosseno de π/2 rad é igual a 0, o resultado obtido é igual a 0.

Questão 3 - Determine a velocidade máxima de um móvel que descreve um movimento harmônico simples de amplitude igual a 5 m sabendo que sua velocidade angular é igual a 2π rad/s.

a) 2π m/s

b) 10π m/s

c) π m/s

d) π/4 m/s

Gabarito: letra B.

Resolução:

A fórmula que relaciona a velocidade da partícula que desenvolve um movimento harmônico simples é mostrada abaixo. Ressalta-se que, para se obter a máxima velocidade nesse tipo de movimento, o seno, do qual a função da velocidade depende, deve ter seu valor igual a -1; dessa maneira, basta fazer a multiplicação a seguir.

Publicado por Rafael Helerbrock

Artigos Relacionados

Efeito Doppler
Clique para saber tudo sobre o efeito Doppler. Confira aqui o que é o efeito Doppler, quais são suas aplicações, suas fórmulas, e muito mais.
Energia cinética
Acesse o texto para conhecer a definição de energia cinética. Aprenda a aplicação da dessa grandeza física. Teste seus conhecimentos com os exercícios resolvidos.
Função horária da aceleração no MHS
Estudo do movimento oscilatório: determinando a função horária da aceleração no MHS.
Função horária da velocidade no MHS
Observe como é possível determinar a função horária da velocidade no MHS, no estudo do movimento oscilatório.
Lei de Hooke
Você conhece a lei de Hooke? Confira a definição da lei que calcula a força elástica, entenda seu gráfico e estude ainda com exercícios resolvidos.
Ondas mecânicas
Descubra o que são as ondas mecânicas, bem como veja como elas se propagam e os tipos de ondas que existem.
Período e constante elástica
Determinando a relação entre período do MHS e a constante elástica da mola.
Relação entre MHS e MCU
Veja aqui como podemos relacionar o movimento harmônico simples (MHS) com o movimento circular uniforme (MCU) de uma partícula.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.