Whatsapp icon Whatsapp

Inequações trigonométricas: tgx > k

As inequações trigonométricas, em especial tgx > k, são desigualdades que possuem pelo menos uma razão trigonométrica e cuja incógnita é a medida de um arco.
Toda inequação trigonométrica pode ser reduzida a uma inequação e utilizar o ciclo trigonométrico na resolução
Toda inequação trigonométrica pode ser reduzida a uma inequação e utilizar o ciclo trigonométrico na resolução

As inequações trigonométricas são desigualdades que possuem pelo menos uma razão trigonométrica cuja incógnita é um arco. Toda inequação trigonométrica pode ser reduzida a uma inequação do tipo senx < k, senx > k, cosx < k, cosx > k, tgx < k e tgx > k. Neste artigo, estudaremos um método de resolução para inequações que podem ser reduzidas a tgx > k.

Para tanto, é necessário conhecer detalhes sobre o ciclo trigonométrico, por exemplo, como obter a medida da tangente a partir de um ângulo e como transformar uma dessas medidas em um arco.

Ciclo trigonométrico

O ciclo trigonométrico é uma circunferência de raio 1 un, com centro localizado na origem de um plano cartesiano. O eixo x do plano é conhecido como eixo dos cossenos no ciclo. Já o eixo y do plano é chamado eixo dos senos no ciclo. O eixo das tangentes é uma reta paralela ao eixo y, tangente à circunferência pelo ponto (1, 0), como mostra a figura a seguir.

Os ângulos sobre o ciclo são representados da seguinte maneira: o vértice do ângulo é o centro e seus lados são os raios do ciclo. A única regra é que o primeiro lado do ângulo esteja sobre a parte positiva do eixo dos cossenos. Assim, o segundo lado determina a abertura do ângulo no sentido anti-horário (positivo) ou no sentido horário (negativo). Observe um ângulo de 60° sobre o ciclo trigonométrico:

O segmento CA está sobre o eixo dos cossenos, e o segmento CB é o raio que determina a abertura de 60°. Prolongando o segmento CB para que ele encontre o eixo das tangentes no ponto D, teremos a figura acima. Nessa figura, o comprimento do segmento AD é igual à tangente do ângulo de 60°. Além disso, o ângulo de 60°, em radianos, é igual ao comprimento do arco menor AB.

Não pare agora... Tem mais depois da publicidade ;)

Para determinar a medida do comprimento do arco, em radianos, usamos a regra de três, tendo em vista que meia volta (180°) equivale a π radianos.

Solução da inequação tgx > k

Na inequação tgx > k, observe que k é a medida do segmento AD, e que x é a medida do comprimento do arco AB, que pode ser relacionada a um ângulo. Dado o segmento AD, de comprimento k, existe um ângulo α relacionado a ele. Observe a imagem abaixo, que contém esse comprimento e ângulo.

Como x representa o comprimento do arco AB, para encontrar esse valor em radianos, basta determinar os ângulos α que fazem com que tgx seja maior que k, isto é, que determinam arcos maiores que o arco AB. Para isso, x precisa estar ligado a ângulos maiores do que α.

A figura a seguir mostra o intervalo do ciclo trigonométrico que fazem com que a tgx seja maior que k.

Observe que existem dois intervalos que fazem com que a tgx seja maior que k. Eles estão destacados em lilás na imagem acima. Qualquer reta que passe por esses intervalos em destaque encontra-se com o eixo das tangentes acima do ponto D, ou seja, fará com que a tangente seja maior que k.

Sabendo que, se existe k no eixo das tangentes, então existe um ângulo α relacionado a ele por meio da tangente. Assim, temos:

tgx > k

tgx > tgα

α + 2kπ < x < π/2 + 2kπ

ou

π + α + 2kπ < x < 3π/2 + 2kπ

Nesse caso, k é um número inteiro.

Exemplo:

Qual é o valor de x na equação tgx > √3?

Solução:

Sabendo que tg60° = √3, temos:

tgx > tg60°

60° = π/3 rad.

π/3 + 2kπ < x < π/2 + 2kπ

ou

π + π/3 + 2kπ < x < 3π/2 + 2kπ

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Plano cartesiano
Conheça o que é o plano cartesiano e qual a sua função. Saiba também como montar e marcar pontos nele.
Propriedades da desigualdade nas inequações
Aprenda as propriedades da desigualdade nas inequações que, juntamente à análise dos resultados, é a maior diferença entre elas e as equações.
Regra de três simples
Saiba quando e como usar a regra de três simples. Veja também como calcular porcentagem utilizando a regra de três simples.
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
Ângulos
Aprenda o que são ângulos. Conheça suas classificações e saiba como medi-los. Entenda o que são ângulos congruentes e outros conceitos.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.