Três erros mais cometidos na Trigonometria
A Trigonometria é a importante área da Matemática que estuda as relações entre lados e ângulos de triângulos. Nos vestibulares e Enem, a Trigonometria é um conteúdo muito frequente, por isso, é necessário saber solucionar problemas com esse conteúdo básico. Para tanto, conheça os erros mais cometidos na resolução de questões com esse tema.
Erro 1: Não interpretar corretamente o problema
Conhecer todas as propriedades, conceitos, definições e características que envolvem a Trigonometria pode não ser suficiente para acertar todas as questões a respeito dela. É preciso saber interpretar bem os problemas propostos, uma vez que o Enem, por exemplo, é uma prova contextualizada, e os vestibulares seguem esse mesmo padrão.
É comum ter questões nesse tipo de exame questionando o perímetro de determinado triângulo. Entretanto, para descobrir essa medida, devemos calcular primeiramente a medida de um ou dois de seus lados, usando, para isso, a Trigonometria, ou qualquer outro conhecimento com o qual seja possível determinar essa medida.
O caminho para encontrar a medida de um dos lados do triângulo é tão trabalhoso que o estudante pode não se lembrar mais o que foi pedido no problema (no caso, o perímetro do triângulo). Além disso, o valor do lado encontrado pode estar entre as alternativas da questão objetiva, o que o induz também ao erro.
Portanto, é importante fazer uma boa leitura das questões e ter em mente o que é solicitado por elas. Para facilitar, sugerimos que o estudante sublinhe a parte da questão que revela a sua pergunta. Após a conclusão dos cálculos, basta ler essa parte para saber se o valor encontrado condiz com o que foi pedido.
Erro 2: Erros na tabela de valores das razões trigonométricas
Existem duas tabelas com valores de razões trigonométricas. Uma delas é completa, contemplando todos os ângulos que vão de 1° a 89°. Essa tabela mostra todos os valores decimais das razões trigonométricas que, geralmente, são dados nas questões.
Esses valores só não são disponibilizados quando os cálculos incluem os ângulos notáveis 30°, 45° e 60°, pois, para eles, existe uma segunda tabela:
Observe que essa tabela possui valores fracionários do seno, cosseno e tangente dos ângulos notáveis. Esses valores não costumam ser dados nos exercícios, por isso, é importante que o aluno conheça-os previamente.
O maior erro cometido ao usar essa tabela consiste em trocar os valores dela, por exemplo, colocar o valor do seno de 30° no lugar do cosseno de 30°. A maior parte desses erros refere-se ao uso da tangente de 30° e de 60°.
Em um triângulo que possui um ângulo de 60°, o cateto oposto a ele mede 10 cm e o adjacente mede x. Para descobrir a medida de x, devemos usar a tangente. O erro está ao substituir “tg60°” por √3/3 no lugar de substituir pelo valor correto: √3.
Erro 3: As razões trigonométricas
As razões trigonométricas são as definições de seno, cosseno e tangente. Por mais básicas que sejam, existem pessoas que as utilizam de forma errada, na maioria das vezes, por falta de atenção.
Essas razões são definidas para o triângulo retângulo da maneira exposta logo a seguir. Lembre-se de que a hipotenusa é o lado oposto ao ângulo reto, o cateto oposto não toca o ângulo observado e o cateto adjacente é o lado que o toca. Então, considerando um triângulo retângulo e fixando o seu ângulo α, teremos:
Senα = Cateto oposto a α
hipotenusa
Cosα = Cateto adjacente a α
hipotenusa
Tgα = Cateto oposto a α
Cateto adjacente a α
Um dos erros mais frequentes ao resolver questões de Trigonometria está relacionado ao uso dessas razões. O aluno não toma o cuidado de observar qual das três razões deve ser usada e acaba misturando as definições de duas delas. Em outros casos, o aluno realmente se confunde e usa uma razão em vez de outra.
Considerando, por exemplo, um triângulo retângulo ABC, retângulo em B, que possua catetos com medidas iguais, qual seria a medida do ângulo A?
Observe que, para resolver esse problema, a razão trigonométrica adequada é tangente. Sendo os catetos iguais a x, teremos:
TgA = x
x
TgA = 1
A = 45°
Dicas:
1 – Sempre que for necessário usar as medidas de dois catetos e um ângulo, a razão correta a ser usada é a razão tangente.
2 – Sempre que o valor da hipotenusa puder ser usado, existirão casos em que o estudante deverá usar uma razão trigonométrica específica; em outros, pode ser possível escolher entre qualquer uma das três.
3 – Apenas dois lados e um ângulo de um triângulo retângulo podem ser usados de cada vez na Trigonometria básica. Se um desses lados for a hipotenusa e o outro for o cateto oposto, essa razão será seno; se um dos lados for a hipotenusa e o outro for o cateto adjacente, essa razão será cosseno; se ambos os lados forem catetos, essa razão será tangente.