Whatsapp icon Whatsapp

Eletromagnetismo

O eletromagnetismo é um campo de estudo da Física que relaciona a área da eletricidade à área do magnetismo e investiga seus fenômenos de maneira unificada.
Campo magnético em torno da Terra, em alusão eletromagnetismo.
O eletromagnetismo explica fenômenos como, por exemplo, o campo magnético da Terra.

Eletromagnetismo é a área responsável por estudar os fenômenos elétricos e os fenômenos magnéticos de maneira unificada. Essa área comporta os estudos da Física desde a lei de Coulomb (que estuda a força elétrica) até as equações de Maxwell.

Leia também: O que são ondas eletromagnéticas?

Resumo sobre eletromagnetismo

  • O eletromagnetismo comporta tudo que é estudado em eletricidade e em magnetismo.

  • Existem diversas fórmulas estudadas no eletromagnetismo, entre elas a lei de Faraday-Lenz e as equações de Maxwell.

  • O eletromagnetismo é importante no desenvolvimento das tecnologias usadas nos equipamentos elétricos e eletrônicos, investigação da origem da vida e no uso e aperfeiçoamento da eletricidade e magnetismo para os mais diversos fins.

  • No século 19 descobriram-se os efeitos magnéticos das correntes elétricas, sendo o ponto de partida do estudo do eletromagnetismo.

O que é eletromagnetismo?

O eletromagnetismo é uma área da Física que estuda os fenômenos elétricos junto aos fenômenos magnéticos. No ensino superior, o eletromagnetismo aborda os conteúdos vistos em eletricidade e magnetismo através de um formalismo matemático mais complexo do que o proposto no ensino médio.

Não pare agora... Tem mais depois da publicidade ;)

Conceitos importantes do eletromagnetismo

Existem diversos conceitos relacionados à eletricidade, contudo, devido a sua extensão, abaixo estão descritos os mais importantes.

  • Carga elétrica: é uma propriedade intrínseca da matéria que é conservada e quantizada. De acordo com o Sistema Internacional de Unidades, ela é medida em Coulomb [C]. Para saber mais sobre essa propriedade, clique aqui.

  • Força elétrica: é a força de interação atração ou repulsão entre cargas elétricas com sinais opostos ou sinais iguais, respectivamente. De acordo com o Sistema Internacional de Unidades, a sua unidade é o Newton [N]. Para saber mais sobre essa força, clique aqui

  • Campo elétrico: propriedade física gerada no espaço por um corpo eletricamente carregado. De acordo com o Sistema Internacional de Unidades, a sua unidade é o Newton por Coulomb [N/C]. Para saber mais sobre essa propriedade, clique aqui

  • Lei de Gauss: compara o fluxo total de um campo elétrico sobre uma superfície gaussiana (superfície fechada) à carga elétrica total que está envolvida pela superfície sob a constante de permissividade do vácuo.

  • Potencial elétrico: indica a energia necessária para transportar uma carga elétrica entre dois pontos em um espaço com campo elétrico. De acordo com o Sistema Internacional de Unidades, ela é medida em Volt. Para saber mais sobre esse conceito, clique aqui.

  • Capacitância: informa a capacidade que um capacitor tem de acumular cargas elétricas. De acordo com o Sistema Internacional de Unidades, a sua unidade de medida é o Faraday [F].

  • Corrente elétrica: é o transporte de cargas elétricas dentro de um corpo que sofre uma diferença de potencial elétrico (tensão elétrica). De acordo com o Sistema Internacional de Unidades, a sua unidade de medida é o Ampère [A]. Para saber mais sobre esse conceito, clique aqui.

  • Potência elétrica: é o quanto de energia elétrica um circuito elétrico consome em um período de tempo. De acordo com o Sistema Internacional de Unidades, a sua unidade de medida é o Watt [W].

  • Resistência elétrica: é uma propriedade com a finalidade de resistir ao transporte de corrente elétrica. De acordo com o Sistema Internacional de Unidades, a sua unidade de medida é o Ohm [Ω]. Para saber mais sobre essa propriedade, clique aqui.

  • Tensão elétrica: é a diferença entre dois potenciais elétricos. De acordo com o Sistema Internacional de Unidades, ela é medida em Volt.

  • Campo magnético: propriedade intrínseca da matéria ou que pode ser produzida pelo movimento de partículas eletricamente carregadas. De acordo com o Sistema Internacional de Unidades, ele é medido em Tesla [T]. Para saber mais sobre essa propriedade, clique aqui.

  • Força magnética: força produzida por um campo magnético sobre um corpo eletricamente carregado em movimento ou dotado de propriedades magnéticas específicas. De acordo com o Sistema Internacional de Unidades, ela é medida em Newton N. Para saber mais sobre essa força, clique aqui.

  • Fluxo magnético: é a quantidade de campo magnético que percorre uma superfície. De acordo com o Sistema Internacional de Unidades, ele é medido em Weber [Wb].

  • Lei de Faraday: afirma que a força eletromotriz é produzida quando ocorre uma variação de fluxo magnético em um circuito elétrico. Para saber mais sobre essa lei, clique aqui.

  • Equações de Maxwell: conjunto de equações que resumem as leis do eletromagnetismo, servindo para analisar diversos fenômenos estudados em eletricidade, magnetismo e óptica.

Veja também: Radiação ultravioleta — como essa radiação eletromagnética prejudica o ser humano

Fórmulas do eletromagnetismo

  • Fórmula da carga elétrica

\(\mathbf{Q=n\cdot e}\)

Q é a carga elétrica total de um corpo, medida em Coulomb [C].

n é a quantidade de elétrons ou prótons em falta ou em excesso, medida em Coulomb [C].

e é a carga elementar ou carga do elétron, seu valor é ±1,6 ∙ 10-19 C (positivo para prótons e negativo para elétrons).

  • Fórmula da força elétrica

\(\mathbf{F=k\cdot \frac{|Q_1 | \cdot |Q_2 |}{d^2}}\)

F é a força de interação entre as partículas eletricamente carregadas, medida em Newton [N].

\(\mathbf{|Q_1|}\) e \(\mathbf{|Q_2|}\) são os módulos das cargas das partículas, medidos em Coulomb [C].

d é a distância entre as cargas, medida em metros [m].

k é a constante eletrostática do meio, medida em \((N\cdot m)^2/C^2\).

  • Fórmula do campo elétrico

\(\mathbf{E=k \frac{|Q|}{d^2}}\)

E é o campo elétrico, medido em Newton [N].

Q é o módulo da carga da partícula geradora do campo, medido em Coulomb [C].

d é a distância entre as cargas, medida em metros [m].

k é a constante eletrostática do meio, medida em \((N\cdot m)^2/C^2\).

  • Lei de Gauss

\(\mathbf{Φ=\frac{q_{env}}{ε_o}}\)

Φ é o fluxo total de um campo elétrico sobre uma superfície gaussiana, medido em [\((N\cdot m^2)/C\)].

\(\mathbf{q_{env}}\) é a carga elétrica envolvida pela superfície, medida em Coulomb [C].

\(\mathbf{ε_o}\) é a constante de permissividade do vácuo, que vale \(8,85418782\cdot 10^{-12}\ C^2\ /(N\cdot m^2 )\).

  • Fórmula do potencial elétrico

\(\mathbf{V_A=\frac{W_{AB}}q}\)

\(\mathbf{V_A}\) é o potencial elétrico no ponto A, medido em Volts [V].

\(\mathbf{W_{AB}}\) é o trabalho da força elétrica para deslocar uma carga do ponto A ao ponto B, medido em Joule [J].

q é a carga elétrica, medida em Coulomb [C].

  • Diferença de potencial elétrico ou tensão elétrica

\(\mathbf{U=V_B-V_A}\)

U é a diferença de potencial elétrico (ddp), medida em Volts [V].

\(\mathbf{V_A}\) é o potencial elétrico no ponto A, medido em Volts [V].

\(\mathbf{V_B}\) é o potencial elétrico no ponto B, medido em Volts [V].

  • Fórmula da capacitância

\(\mathbf{C=\frac{Q}V}\)

C é a capacitância, medida em Faraday [F] ou Coulomb/Volt [C/V].

Q é a carga armazenada, medida em Ampères [A].

V é o potencial elétrico, medido em Volt [V].

  • Fórmula da corrente elétrica

\(\mathbf{U=R\cdot i}\)

U é a tensão elétrica, medida em Volt [V].

R é a resistência equivalente, medida em Ohm [Ω].

i é a corrente elétrica, medida em Ampère [A].

  • Fórmula da potência elétrica

\(\mathbf{P=R\cdot i^2=\frac{U^2}{R}=i\cdot ∆U}\)

P é a potência elétrica, medida em Watt [W].

R é a resistência elétrica, medida em Ohm [Ω].

i é a corrente elétrica, medida em Ampère [A].

U é a tensão elétrica, medida em Volt [V].

∆U é a variação de tensão elétrica, também chamada de diferença de potencial elétrico, medida em Volt [V].

  • 1ª Lei de Ohm

\(\mathbf{R=\frac{U}i}\)

U é a diferença de potencial (ddp), medida em Volts [V].

R é a resistência elétrica, medida em Ohm [Ω].

i é a corrente elétrica, medida em Ampère [A].

  • 2ª Lei de Ohm

\(\mathbf{ρ=\frac{R\cdot A}L}\)

ρ é a resistividade do material, medida em [Ω ∙ m].

R é a resistência elétrica, medida em Ohm [Ω].

L é o comprimento do condutor, medido em metros [m].

A é a área de secção transversal do condutor, medida em [m2].

  • Campo magnético em uma espira circular

\(\mathbf{B=\frac{μ_o\cdot i}{2\cdot R}}\)

B é o campo magnético, medido em Tesla [T].

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4π\cdot 10^{-7}\ T\cdot m/A\).

i é a corrente elétrica, medida em Ampère [A].

R é o raio da espira, medido em metros [m].

  • Campo magnético em uma bobina chata

\(\mathbf{B=N\cdot \frac{μ_o\cdot i}{2\cdot R}}\)

B é o campo magnético, medido em Tesla [T].

N é o número de espiras da bobina.

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4π\cdot 10^{-7}\ T\cdot m/A\).

i é a corrente elétrica, medida em Ampère [A].

R é o raio da bobina, medido em metros [m].

  • Campo magnético em um condutor reto

\(\mathbf{B=\frac{μ_o\cdot i}{2\cdot π\cdot d}}\)

B é o campo magnético, medido em Tesla [T].

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4π\cdot 10^{-7}\ T\cdot m/A\).

i é a corrente elétrica, medida em Ampère [A].

d é a distância ao fio, medida em metros [m].

  • Campo magnético no interior de um solenoide

\(\mathbf{B=N\cdot \frac{μ_o\cdot i}l}\)

B é o campo magnético, medido em Tesla [T].

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4π\cdot 10^{-7}\ T\cdot m/A\).

i é a corrente elétrica, medida em Ampère [A].

N é o número de espiras ou voltas no solenoide.

l é o comprimento do solenoide, medido em metros [m].

  • Força magnética sobre partículas carregadas

\(\mathbf{F=|q|\cdot v\cdot B\cdot sin\ ⁡θ}\)

F é a força magnética, medida em Newton N.

\(\mathbf{|q|}\) é o módulo da carga elétrica em excesso ou falta, medido em Coulomb [C].

v é a velocidade da partícula em relação ao campo magnético, medida em [m/s].

B é o campo magnético, medido em Tesla [T].

θ é o ângulo formado entre a velocidade e o campo magnético, medido em graus [°].

  • Força magnética sobre condutores retilíneos

\(\mathbf{F=B\cdot i\cdot l\cdot sin\ ⁡θ}\)

F é a força magnética, medida em Newton N.

B é o campo magnético, medido em Tesla [T].

i é a corrente elétrica, medida em Ampère [A].

l é o comprimento do fio, medido em metros [m].

θ é o ângulo formado entre o comprimento do fio e o campo magnético, medido em graus [°].

  • Força magnética sobre dois condutores retilíneos

\(\mathbf{F=μ_o\cdot \frac{i_1\cdot i_2\cdot l}{2\cdot π\cdot d}}\)

F é a força magnética, medida em Newton N.

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4π\cdot 10^{-7}\ T\cdot m/A\).

i1 é a corrente elétrica do condutor 1, medida em Ampère [A].

i2 é a corrente elétrica do condutor 2, medida em Ampère [A].

l é o comprimento do fio, medido em metros [m].

d é a distância entre os dois condutores, medida em metros [m].

  • Fórmula do fluxo magnético

\(\mathbf{ϕ=B\cdot A\cdot cos\ ⁡θ}\)

ϕ é o fluxo magnético, medido em Weber [Wb] ou [T ∙ m].

B é o campo magnético, medido em Tesla [T].

A é a área da superfície, medida em [m2].

θ é o ângulo entre a normal ao plano da espira e o vetor campo magnético, medido em graus [°].

  • Lei de Faraday-Lenz

\(\mathbf{ε=-\frac{Δϕ}{Δt}}\)

ε é a força eletromotriz induzida, medida em Volt [V].

Δϕ é a variação de fluxo magnético, medida em Weber [Wb] ou [T ∙ m].

Δt é a variação de tempo, medida em segundos [s].

  • Equações de Maxwell

As equações de Maxwell (em equações integrais) quando não há materiais dielétricos ou magnéticos são:

1) Lei de Gauss para a eletricidade

\(∮\vec{E}\cdot d\vec{A}=\frac{q_{env}}{ε_o }\)

2) Lei de Gauss para o magnetismo

\(∮\vec{E}\cdot d\vec{A}=0\)

3) Lei de Faraday

\(∮\vec{E}\cdot d\vec{S}=-\frac{dΦB}{dt}\)

4) Lei de Ampère-Maxwell

\(∮\vec{E}\cdot d\vec{S}=μ_o\cdot ε_o\cdot \frac{dΦB}{dt}+μ_o\cdot i_{env}\)

Aplicações e importância do eletromagnetismo

Dispositivos que envolvem a aplicação do eletromagnetismo.
Diferentes dispositivos foram desenvolvidos através dos estudos do eletromagnetismo.

O eletromagnetismo é de suma importância para a preservação e evolução da vida, já que o seu estudo permite desenvolvermos dispositivos elétricos — como motores elétricos, cartões elétricos, baterias e muitos outros — e criarmos redes de telecomunicação e redes elétricas para que haja comunicação e eletricidade nas residências, hospitais e indústrias. Além disso, o estudo do eletromagnetismo contribui na investigação da origem subatômica e atômica da matéria que nos compõe.

Saiba mais: Como funcionam os condutores elétricos?

Origem do eletromagnetismo

Há registros e textos sobre a eletricidade e magnetismo datados desde o século VII e VI a.C., na Grécia Antiga; um deles é do filósofo, matemático e astrônomo Tales de Mileto (623 a.C. – 558 a.C.). Mas o estudo da eletricidade associada ao estudo do magnetismo — o eletromagnetismo — só se iniciou no século 19, quando descobriram os efeitos magnéticos das correntes elétricas.

Depois tivemos a descoberta do fenômeno da indução eletromagnética do físico e químico Michael Faraday (1791–1867). Junto a Joseph Henry (1797–1878), ele descobriu a indução eletromagnética.

Em torno de 1873, o físico e matemático James Maxwell (1831–1879) reuniu as leis de Gauss da eletricidade e do magnetismo, a lei de indução Faraday e a lei de Ampère-Maxwell no conjunto de equações fundamentais do eletromagnetismo clássico, denominadas equações de Maxwell.

No início do século 20, com a introdução do eletromagnetismo à relatividade restrita, observou-se que o campo elétrico e o campo magnético se tratavam de diferentes abordagens do mesmo campo fundamental, o campo eletromagnético.

Exercícios resolvidos sobre eletromagnetismo

Questão 1

(Mack-SP) Uma carga elétrica puntiforme com q = 4,0 μC, que é colocada em um ponto P do vácuo, fica sujeita a uma força elétrica de intensidade 1,2 N. O campo elétrico nesse ponto P tem intensidade:

a) 3,0 ∙ 105 N/C

b) 2,4 ∙ 105 N/C

c) 1,2 ∙ 105 N/C

d) 4,0 ∙ 10-6 N/C

e) 4,8 ∙ 10-6 N/C

Resolução:

Alternativa A. Calcularemos o campo elétrico através da fórmula que o relaciona à carga elétrica e à força elétrica:

\(F=|q|\cdot E\)

\(1,2=|4,0 μ|\cdot E\)

em que μ = 10-6. Então, substituindo:

\(1,2=4,0\cdot 10^{-6}\cdot \vec{E}\)

\(E=\frac{1,2}{4,0\cdot 10^{-6}}\)

\(E=0,3\cdot 10^6\)

\(E=3\cdot 10^{-1}\cdot 10^6\)

\(E=3\cdot 10^{-1+6}\)

\(E=3\cdot10^5\ N/C\)

Questão 2

(Cesgranrio-RJ) Aproxima-se uma barra imantada de uma pequena bolha de aço, observa-se que a bilha:

Barra imantada em exercício sobre eletromagnetismo.

a) é atraída pelo polo norte e repelida pelo polo sul

b) é atraída pelo polo sul e repelida pelo polo norte

c) é atraída por qualquer dos polos

d) é repelida por qualquer dos polos

e) é repelida pela parte mediana da barra

Resolução:

Alternativa C. Como a bola de aço está eletricamente neutra, ela pode ser atraída por ambos os polos da barra.

Fontes

NUSSENZVEIG, Herch Moysés. Curso de física básica: Eletromagnetismo (vol. 3). Editora Blucher, 2015.

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos da Física: Eletromagnetismo (vol. 3). 10. ed. Rio de Janeiro, RJ: LTC, 2016.

SAMPAIO, José Luiz; CALÇADA, Caio Sérgio. Universo da Física: Ondulatória. Eletromagnetismo, Física Moderna. São Paulo: Atual, 2005. 

Publicado por Pâmella Raphaella Melo

Artigos Relacionados

As Equações de Maxwell
As equações de Maxwell apresentadas teoricamente.
Carga elétrica
Você sabe o que é carga elétrica? Confira aqui seus tipos e saiba como calculá-la. Entenda também os processos de eletrização.
Eletricidade
Acesse este texto e descubra qual é o conceito de eletricidade na física. Conheça o significado de campo elétrico, corrente elétrica e potencial elétrico.
Enunciando a Lei de Biot-Savart
Através do experimento de Oersted surgiu a lei de Biot-Savart.
Força magnética
Clique aqui e veja o que é força magnética e quais relações ela possui com a carga de um corpo e com a corrente elétrica.
Hans Christian Oersted
Conheça a história de Hans Christian Oersted, importante estudioso dinamarquês que abriu caminho para os estudos do eletromagnetismo.
Indução eletromagnética
Você sabe o que é indução eletromagnética? Acesse para conferir um resumo sobre indução e as fórmulas usadas para calcular a força eletromotriz induzida.
Lei de Ampère
Clique para entender tudo sobre a lei de Ampère. Confira aqui o que é a lei de Ampére, sua fórmula, como calculá-la, suas aplicações e muito mais.
Lei de Faraday
Você sabe o que é a lei de Faraday? Saiba o que é fluxo magnético, e confira a fórmula da força eletromotriz induzida e exercícios sobre indução eletromagnética.
Magnetismo
Clique para entender tudo sobre magnetismo. Confira aqui o que é, para que serve, seus tipos, suas fórmulas, sua história, exercícios resolvidos e muito mais.
O Poder das Pontas
Entenda o que é o poder das pontas.
Ondas Eletromagnéticas
Saiba mais sobre as ondas eletromagnéticas! Conheça suas características, tipos (como as micro-ondas) e fórmulas. Confira exercícios resolvidos sobre o tema.
Primeira lei de Ohm
Você sabe o que diz a primeira lei de Ohm? Clique aqui, entenda essa lei, conheça sua fórmula, descubra como usá-la e veja como é seu gráfico.
Resistência elétrica e temperatura
Veja aqui como é feita a relação entre a resistência elétrica e a temperatura de um material.
video icon
Escrito"Matemática do Zero | Média Aritmética" em fundo azul.
Matemática do Zero
Matemática do Zero | Média Aritmética
Nessa aula veremos como calcular a média aritmética simples e a média aritmética ponderada de uma amostra.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.