Whatsapp icon Whatsapp

Diferenças entre figuras planas e espaciais

 As figuras geométricas podem ser planas ou espaciais dependendo da quantidade de dimensões necessárias para a sua construção. Por exemplo, um plano é necessário e suficiente para a construção de um quadrado. Por outro lado, é impossível construir um cubo sobre o plano, uma vez que o cubo possui três dimensões.

Sendo assim, compreender a maior das diferenças entre figuras planas e espaciais depende de entender bem as dimensões do espaço e as figuras que podem ser construídas em cada uma delas.

Leia também: Quais são os sólidos de Platão?

Dimensões do espaço

O ponto é uma figura geométrica que não possui dimensão nem formato. Podemos dizer que o número de dimensões necessárias para desenhar um ponto é zero.

Por sua vez, a reta é uma figura geométrica que apresenta apenas uma dimensão. É por esse motivo que ela tem comprimento infinito, mas não possui largura ou profundidade. As retas também podem ser consideradas como “espaço de uma dimensão”, ou seja, é possível construir, dentro de uma reta, figuras geométricas que possuem uma dimensão ou menos. Essas figuras são: ponto, segmentos de reta, semirretas e a própria reta. Exceto pelo ponto, que possui dimensão zero, todas essas figuras são unidimensionais.

Não pare agora... Tem mais depois da publicidade ;)

O plano é uma figura geométrica que possui duas dimensões. É por isso que ele tem comprimento e largura infinitos, mas possui profundidade nula. Os planos são considerados o “espaço de duas dimensões”. Sendo assim, é possível construir qualquer figura geométrica que possua duas ou menos dimensões dentro de um plano. São exemplos dessas figuras: ponto, retas, semirretas, segmentos de retas, triângulos, quadriláteros, círculos, curvas etc.

Qualquer figura que pode ser construída dentro de um plano, mas não pode ser construída em uma reta, é uma figura plana. Por essa razão, figuras bidimensionais são denominadas de figuras planas.

O espaço é uma figura geométrica que possui três dimensões e, por isso, apresenta comprimento, largura e profundidade infinitos. Sendo assim, o espaço é um “espaço de três dimensões”, ou seja, qualquer figura que possua três dimensões ou menos pode ser construída dentro dele.

As figuras que precisam do espaço tridimensional para serem construídas são chamadas de tridimensionais ou espaciais. São exemplos de figuras espaciais: pirâmide, prisma, cubo, esfera, cilindro etc.

Veja também: Como estudar geometria para o Enem?

Quais as diferenças entre figuras planas e espaciais?

A quantidade de dimensões define e diferencia as figuras planas e espaciais.
A quantidade de dimensões define e diferencia as figuras planas e espaciais.

A partir dessa discussão sobre dimensões, fica explícita a maior diferença entre figuras planas e figuras espaciais, também chamadas de sólidos geométricos: as figuras planas são bidimensionais, ou seja, é necessário e suficiente que elas sejam construídas em um plano. Uma figura plana até pode ser construída dentro do espaço, mas dentro desse mesmo espaço sempre será possível determinar um único plano que contém essa figura.

as figuras espaciais, ou sólidos geométricos, precisam de uma dimensão a mais para serem construídas, ou seja, são necessariamente figuras tridimensionais.

As figuras planas têm comprimento e largura, mas não possuem profundidade. Já as figuras espaciais apresentam comprimento, largura e profundidade.

A figura a seguir mostra alguns exemplos de figuras planas:

A figura a seguir mostra a tentativa de construir uma figura tridimensional dentro de um plano. Note que é impossível, pois a maior parte dessa figura é relativa à profundidade inexistente no plano.

Por fim, observe um exemplo de figura tridimensional, também conhecida como sólido geométrico:

Como as figuras planas não possuem profundidade, pode-se calcular apenas sua área e perímetro. No caso das figuras espaciais, é possível calcular área e volume. 

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Cilindro
Clique aqui e saiba tudo sobre o cilindro: seus elementos, sua classificação, suas fórmulas e muito mais!
Como estudar geometria para o Enem?
Conheça estratégias para estudar geometria para o Enem. Entenda a importância de fazer exercícios e de programar as revisões desse conteúdo.
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Dimensões do espaço
Clique e aprenda o que são as dimensões do espaço e como os objetos, figuras e sólidos geométricos comportam-se diante delas.
Elementos de uma esfera
Clique e veja quais são os elementos da esfera, como essas figuras geométricas são definidas e alguns cálculos que os envolvem.
Geometria espacial
Conheça tudo sobre geometria espacial clicando aqui! Aprenda os principais sólidos e as suas fórmulas para área total e volume.
Geometria plana
Entenda os principais conceitos da geometria plana. Conheça as principais figuras geométricas, e aprenda a calcular a área e o perímetro de cada uma delas.
Hexaedro Regular
Confira aqui qual a formação de um hexaedro, aprenda também a calcular seu volume e área.
Noções primitivas de Geometria: ponto, reta, plano e espaço
Clique para saber mais sobre as noções primitivas de Geometria (reta, ponto, plano e espaço), além de conhecer suas propriedades.
O que é plano?
Clique e aprenda o que é um plano, os postulados que garantem sua existência e como construí-los.
Pirâmide
Clique aqui, aprenda o que é pirâmide, conheça seus diferentes tipos e calcule seu volume e sua área utilizando as fórmulas específicas para esses cálculos.
Planificação de sólidos geométricos
Clique para ver a planificação de alguns sólidos geométricos. Veja como construir essas planificações a partir do número e do tipo de superfícies que podem ser encontradas nessas figuras geométricas tridimensionais. Além disso, obtenha exemplos de como a planificação de cada tipo de sólido deve ser feita.
Plano cartesiano
Conheça o que é o plano cartesiano e qual a sua função. Saiba também como montar e marcar pontos nele.
Pontos notáveis de um triângulo
Clique aqui e entenda o que são os pontos notáveis de um triângulo. Saiba quais são eles e descubra como diferenciá-los.
Prisma
Clique aqui, entenda o que é um prisma, conheça seus tipos e descubra quais são as fórmulas que podem ser utilizadas para calcular suas áreas e seu volume.
Quadriláteros
Você sabe o que é um quadrilátero? Clique no texto para entender o que são os quadriláteros, veja exemplos e saiba como eles são classificados.
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Sólidos de Platão
Conheça os cinco sólidos de Platão e aprenda a determinar o número de vértices, arestas e faces desses poliedros a partir da relação de Euler.
video icon
Escrito"Matemática do Zero | Retas paralelas cortadas por uma transversal " em fundo azul.
Matemática do Zero
Matemática do Zero | Retas paralelas cortadas por uma transversal
Nessa aula veremos o que são retas paralelas cortadas por uma transversal. Além disso, veremos as porpriedades e nomencaltura dos ângulos formados nessas duas retas cortadas por uma transversal: alternos internos, alternos externos, colaterais internos e colaterais externos.