Área e perímetro

Área e o perímetro são grandezas de grande importância para o estudo das figuras planas, na geometria plana. Existem fórmulas específicas para calcular a área e o perímetro.
Para calcular a área do quadrado, multiplicamos a sua base e a sua altura.

Área e perímetro são cálculos importantes no estudo de figuras planas. Conhecemos como área a medida da superfície da figura; já o perímetro é o comprimento do contorno da figura, e o seu valor é encontrado quando calculamos a soma de todos os lados da figura. Quando estudamos os polígonos, que são casos particulares de figuras planas, para encontrar o seu perímetro, basta realizar a soma do comprimento de todos os lados, enquanto a área é calculada por fórmulas específicas para cada polígono.

A área e o perímetro de uma figura são muito úteis na construção civil, em plantações, e também para termos noção do tamanho de superfícies no dia a dia, havendo diversas aplicações desses conceitos.

Leia mais: Diferenças entre figuras planas e figuras espaciais

Resumo sobre área e perímetro

  • A área é uma grandeza igual à medida da superfície de uma figura plana.

  • Cada figura plana possui uma fórmula específica para o cálculo da área.

  • As principais fórmulas de área são:

  • O perímetro é igual à soma do comprimento de todos os lados de uma figura plana.

O que é área?

A área é uma grandeza importante da geometria. Dada uma figura geométrica, a área é a medida de superfície dessa figura. Para calcular a área das figuras planas, utilizamos fórmulas específicas para cada uma delas, quando necessário, dividimos a figura plana em figuras planas conhecidas e somamos as áreas. Vejamos, a seguir, as principais figuras planas e a fórmula para calcular a área de cada uma.

  • Videoaula sobre área das figuras planas

Área de um paralelogramo

Conhecemos como paralelogramos as figuras planas que possuem lados opostos paralelos. Para calcular a área de um paralelogramo qualquer, multiplicamos a sua base pela sua altura.

Existem casos particulares de paralelogramo, são eles o quadrado, o retângulo e o losango. Os dois primeiros possuem fórmulas parecidas para o cálculo de área, já o losango usa uma fórmula um pouco diferente, mas que é deduzida da fórmula da área do paralelogramo.

Área de retângulo

O retângulo é um caso particular de paralelogramo, pois ele possui todos os ângulos internos retos. Para calcular a sua área, utilizamos a mesma fórmula do paralelogramo, a diferença é que um dos seus lados coincide com a sua altura.

Área do quadrado

O quadrado também é um caso particular de paralelogramo. Além de possuir um ângulo reto, o quadrado possui todos os lados congruentes. Para calcular a sua área, multiplicamos a sua base e a sua altura, e, como os lados são congruentes, calculamos o quadrado da medida do lado.

Área do losango

Diferentemente dos anteriores, para calcular a área de um losango, é necessário conhecer o comprimento das suas diagonais. O losango possui duas diagonais: a diagonal maior D e a diagonal menor d. Para saber a sua área, calculamos o produto entre as diagonais e dividimos por 2.

Área do triângulo

O triângulo não é um paralelogramo, mas, ainda assim, é uma figura plana muito importante. Conhecemos como triângulo a figura plana que possui três lados, e, para saber a área de um triângulo, calculamos o produto entre a sua base e a sua altura e dividimos por 2.

Área do trapézio

O trapézio é uma figura plana que possui dois lados paralelos e dois lados não paralelos. Os lados paralelos são chamados de base maior B e base menor b, e, para calcular a sua área, utilizamos a seguinte fórmula:

Caso queira saber mais sobre o tema deste tópico, leia: Área do trapézio.

Área do círculo

O círculo também é uma figura plana muito importante, e, para calcular a sua área, é necessário conhecer o valor do seu raio.

O que é perímetro?

O perímetro de uma figura plana é igual à soma do comprimento de todos os lados dela. Assim, ainda que exista fórmula para algumas figuras planas, basta lembrar que a soma dos seus lados resulta no seu perímetro.

Como calcular o perímetro

O perímetro é sempre igual à soma de todos os lados da figura plana, então, em algumas figuras planas, é possível utilizar uma fórmula nesse sentido. Vejamos o perímetro das principais figuras planas.

Perímetro do paralelogramo e do retângulo

Para calcular o perímetro do paralelogramo e do retângulo, utilizamos a mesma fórmula. Como eles possuem lados opostos congruentes, podemos calcular a soma dos seus lados utilizando a fórmula a seguir:

Perímetro do quadrado e do losango

O quadrado e o losango possuem todos os lados congruentes, então, para calcular o perímetro dessas figuras planas, basta multiplicar o comprimento do seu lado por 4.

Perímetro do triângulo

O triângulo não possui fórmula específica. Para calcular o seu perímetro, basta realizar a soma dos seus lados. Assim como no trapézio, não existe fórmula específica para essa figura:

Exercícios resolvidos sobre área e perímetro

Questão 1

Um terreno possui formato de um trapézio, com base maior medindo 10 metros e base menor medindo 6 metros. Sabendo que a altura desse terreno é de 8 metros, então a sua área é igual a:

A) 40 m²

B) 45 m²

C) 52 m²

D) 64 m²

E) 96 m²

Resolução:

Alternativa D

Calculando a área do trapézio, temos que B = 10, b = 6 e h = 8. Então, temos que:

Questão 2

A quadra poliesportiva de uma escola possui 22 metros de largura e 44 metros de comprimento. Se um aluno percorrer essa quadra 8 vezes, ele percorrerá:

A) 1500 metros

B) 1320 metros

C) 1188 metros

D) 1100 metros

E) 1056 metros

Resolução:

Alternativa E

Calculando o perímetro, temos que:

P = 2 · (22 + 44)

P = 2 · (66)

P = 132 m

Sabendo que uma volta tem 132 metros, então 8 voltas terão:

132 · 8 = 1056 m

Publicado por Raul Rodrigues de Oliveira
Matemática do Zero
Matemática do Zero | Moda e Mediana
Nessa aula veremos como calcular a moda e a mediana de uma amostra. Mosrarei que a moda é o elemento que possui maior frequência e que uma amostra pode ter mais de uma moda ou não ter moda. Posteriormente, veremos que para calcular a mediana devemos montar o hall (organizar em ordem a amostra) e verificar a quantidade de termos dessa amostra.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos