Área do polígono regular

A área de um polígono regular é obtida por meio de uma fórmula que relaciona essa medida ao apótema e ao lado dessa figura geométrica.
Exemplo de eneágono regular com destaque para um triângulo, que pode ser usado para calcular a área dessa figura

Polígonos regulares são aqueles que possuem lados e ângulos internos congruentes. Para calcular a área desse tipo de polígono, é possível usar uma fórmula que relaciona a medida de seu apótema e lado com a medida da área. A demonstração dessa fórmula é uma alternativa para esse cálculo, uma vez que se pode obter também a área de um polígono regular qualquer por meio dela.

A seguir, demonstraremos a fórmula para calcular a área do polígono regular e apresentaremos um exemplo resolvido desse cálculo.

Área do polígono regular

A área de um polígono regular pode ser obtida pela seguinte fórmula:

A = P·a
      2

Na qual, A é a área do polígono, P é o perímetro e a é o apótema desse polígono. Se essa fórmula for reorganizada, podemos dizer que a área do polígono regular é igual à metade do perímetro – também chamada semiperímetro – multiplicada pelo apótema. Assim, essa fórmula pode ser interpretada da seguinte maneira:

A área do polígono regular é igual ao produto do semiperímetro

desse polígono pela medida de seu apótema.

Demonstração da fórmula

Dado um polígono regular de lado l e que possui n lados, encontre seu centro P e construa os segmentos que ligam cada um de seus vértices a esse ponto. Para tanto, basta construir as mediatrizes de dois lados quaisquer. Essas retas encontrar-se-ão no centro do polígono.

A imagem a seguir representa uma parte de um polígono que possui n lados e que cada um desses lados tem medida representada pela letra l.

Nesse polígono, foram formados n triângulos e todos eles são isósceles e congruentes. Para ter certeza disso, basta construir a circunferência que circunscreve esse polígono e notar que todos os segmentos construídos são raios dela e, por isso, possuem a mesma medida. Além disso, todos os ângulos centrais formados são congruentes e medem 360°/n.

Como os triângulos são congruentes, para calcular a área do polígono, basta calcular a área de um dos triângulos e multiplicar esse resultado por n, que é tanto o número de lados do polígono como o número de triângulos obtidos. Portanto, calcularemos a área do triângulo ABP.

O apótema é um segmento de reta que liga o centro de um polígono ao ponto médio de um de seus lados. Como o triângulo ABP é isósceles, o apótema também é altura e bissetriz nesse triângulo. Sendo assim, base e altura desse triângulo já são conhecidos: respectivamente, lado do polígono e apótema do triângulo.

A área do triângulo ABP, portanto, é:

At = l·a
       2

E, como dito anteriormente, a área do polígono é igual a n vezes a área do triângulo ABP:

A = n·At = n·l·a
                2

Note apenas que o número de lados multiplicado pelo comprimento dos lados é igual ao perímetro P do polígono. Assim, podemos substituir n·l por P:

A = P·a
      2

Exemplo:

Um eneágono regular tem lado igual a 6 centímetros. Qual a medida de sua área?

Solução: O perímetro desse polígono é igual a 6·9 = 54 cm. Em seguida, será necessário encontrar a medida do apótema desse polígono. Para isso, faremos a mesma construção anterior em um eneágono:

Construindo o apótema que divide o lado AB em duas partes iguais e que também é altura e bissetriz, teremos o triângulo retângulo OKB. Observe que o ângulo AÔB é igual a 360°/9, pois o eneágono é regular.

360° = 40°
9          

Observe também que o apótema é bissetriz desse ângulo. Assim, β = 20°. Para descobrir o comprimento do apótema a, basta calcular a tangente de β nesse triângulo.

tg β = 3
         a

tg 20° = 3
            a

No texto Tabelas de razões trigonométricas, há uma aproximação de tg 20° = 0,364. Substituindo esse valor na fórmula, teremos:

0,364 = 3
            a

a =     3    
     0,364

a = 8,24 cm, aproximadamente.

Usando a fórmula para área do polígono regular, teremos:

A = P·a
      2

A = 54·8,24
      2

A = 444,96
      2

A = 222,48 cm2

Observe que o maior trabalho desse exercício foi encontrar a medida do apótema. Caso essa medida fosse dada, todo o cálculo deveria resumir-se a essa última parte.

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Circunferência Inscrita no Quadrado
Calculando áreas de figuras compostas.
Conhecendo os Elementos de um Polígono
Clique aqui e aprenda a identificar quais são os elementos de um polígono!
Círculo
Clique aqui para saber o que é o círculo, quais são os seus principais elementos e fórmulas. Entenda a diferença entre círculo e circunferência.
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Elementos do polígono regular inscrito
Clique e aprenda o que são os elementos do polígono regular inscrito em uma circunferência e conheça algumas propriedades básicas deles.
Polígonos convexos e regulares
Compreenda a definição de polígonos, bem como todos os pré-requisitos para que eles sejam considerados convexos e regulares.
Propriedades do polígono regular inscrito
Aprenda algumas propriedades do polígono regular inscrito na circunferência e saiba como relacionar medidas e proporções dessa figura.
Propriedades do triângulo isósceles
Veja propriedades que podem ser usadas para diferenciar triângulos isósceles de triângulos escalenos.
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Tabelas de razões trigonométricas
Clique para aprender a utilizar tabelas de razões trigonométricas e para descobrir os valores de seno, cosseno e tangente para ângulos agudos!
Área do triângulo retângulo
Clique aqui, saiba qual é a fórmula para calcular a área do triângulo retângulo e veja como calculá-la.
Área e perímetro
Entenda o que é a área e o perímetro de uma figura plana. Conheça as principais fórmulas para o cálculo da área e do perímetro de figuras planas.
Ângulos
Aprenda o que são ângulos. Conheça suas classificações e saiba como medi-los. Entenda o que são ângulos congruentes e outros conceitos.
História
Grécia Antiga: Civilização Micênica
Assista à nossa videoaula para conhecer a história da civilização micênica. Confira também, no nosso canal, outras informações sobre a Grécia Antiga.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos