Whatsapp icon Whatsapp

Corpos redondos

Os corpos redondos, conhecidos também como sólidos de revolução, são formas geométricas presentes no nosso dia a dia, como as esferas, os cones e os cilindros.
Cilindro, cone e esfera prateados: exemplos de corpos redondos.
Os corpos redondos são sólidos geométricos que possuem faces arredondadas.

Os corpos redondos são os sólidos geométricos que possuem superfície arredondadas. Conhecidos também como sólidos de revolução, os principais corpos redondos são a esfera, o cilindro e o cone. Vale dizer que os sólidos geométricos são divididos em dois conjuntos importantes: os poliedros e os corpos redondos.

Leia também: Diferenças entre figuras planas e espaciais

O que são corpos redondos?

Os corpos redondos são sólidos geométricos que possuem pelo menos uma face arredonda. Outro nome dado aos corpos redondos é “sólidos de revolução”, pois podemos obter um corpo redondo por meio da rotação de uma figura plana. Por exemplo, ao rotacionar um triângulo, obtemos um cone.

Quais são os corpos redondos?

De modo geral, sabemos que corpo redondo é qualquer sólido geométrico que possui pelo menos uma de suas faces arredondas. Existem três principais corpos redondos, sendo eles:

Cilindro

O cilindro é um sólido geométrico obtido quando fazemos a rotação de um retângulo.

Rotação de um retângulo, o que dá origem a um cilindro.
O cilindro é obtido quando fazemos a rotação de um retângulo.

O cilindro possui como principais características duas bases circulares de mesmo raio. Há vários objetos que possuem forma de cilindro, como o extintor de incêndio.

Quando analisamos a planificação do cilindro, observamos que ele é composto por um retângulo e dois círculos.

Planificação do cilindro.
Planificação do cilindro.

Os cálculos mais importantes envolvendo cilindro são o de volume e o de área total. Para calcular o volume e a área total do cilindro, precisamos conhecer a medida do raio da base do cilindro e também a sua altura.

Representação de cilindro e fórmulas para cálculo de área e volume.
Fórmulas para cálculo de área e volume do cilindro.

⇒ Cone

O cone também é um sólido geométrico classificado como corpo redondo. Podemos obter um cone quando realizamos a rotação de um triângulo.

Rotação de um triângulo, o que dá origem a um cone.
A rotação de um triângulo retângulo gera um cone.

Podemos identificar a presença do cone em objetos do nosso cotidiano, como um chapéu de aniversário, a casquinha de um sorvete, os cones de trânsito, uma cenoura, entre outros. A planificação do cone é composta por um círculo, que é a base do cone, e um arco, que forma a sua área lateral.

Planificação do cone
A planificação do cone é composta por um círculo e um arco.

Assim como no caso do cilindro, as fórmulas importantes do cone são as de área total e de volume. Para realizar esses cálculos no cone, existem 3 elementos importantes, sendo eles a altura (h), o raio da base (r) e a geratriz (g).

Não pare agora... Tem mais depois da publicidade ;)
Representação de um cone e fórmulas para calcular sua área, volume e geratriz.
Fórmulas para calcular a área, a geratriz e o volume de um cone.

⇒ Esfera

A esfera é um importante corpo redondo estudado na geometria espacial. Podemos obter uma esfera quando fazemos a rotação de um semicírculo.

Rotação de um semicírculo, o que dá origem a uma esfera.
A esfera pode ser obtida por meio da rotação de um semicírculo.

Existem vários elementos esféricos presentes no nosso dia a dia, como o nosso globo ocular, a bola de bilhar e de outros esportes, o formato de algumas frutas etc. Diferentemente do cone e do cilindro, a esfera não possui planificação.

As fórmulas importantes da esfera são as de volume e de área total, que dependem somente do comprimento do raio da esfera.

Esfera e as fórmulas de sua área e volume.
Para calcular a área da esfera e o seu volume, é necessário conhecer a medida do raio.

Diferença entre poliedros e corpos redondos

Os sólidos geométricos são divididos em dois grandes grupos, o grupo dos corpos redondos e o grupo dos poliedros. De modo geral, os poliedros são sólidos geométricos que possuem faces formadas por polígonos, como o cubo, a pirâmide e os prismas. Podemos notar, então, que a diferença entre os poliedros e os corpos redondos é que nos corpos redondos há superfícies que são arredondas, enquanto os poliedros possuem faces formadas exclusivamente por polígonos. Os dois grupos de sólidos geométricos são importantes e são objeto de estudo da Geometria Espacial.

Exemplos de poliedros
Os poliedros são sólidos geométricos com faces formadas por polígonos.

Exercícios resolvidos sobre corpos redondos

Questão 1

Para construir um reservatório de gás oxigênio foi produzida uma esfera que possui raio com 0,5 metro de medida interna. O volume desse reservatório é: (Use π=3.)

A) 0,125 cm³

B) 0,250 cm³

C) 0,500 cm³

D) 0,750 cm³

E) 1,500 cm³

Resolução:

Alternativa C

Calculando o volume da esfera, temos que:

\(V=\frac{4}{3}\cdot\pi r^3\)

\(V=\frac{4}{3}\cdot3\cdot{0,5}^3\)

\(V=\frac{4}{3}\cdot3\cdot0,125\)

\(V=4\cdot0,125\)

\(V=0,5{\ m}^3\)

Questão 2

Um reservatório será construído na forma de um cilindro com altura de 1 metro e raio de 30 centímetros. Utilizando  π = 3,1 , a quantidade de material necessária para construir esse reservatório é, em m²:

A) 1,10

B) 1,54

C) 1,95

D) 2,34

E) 3,40

Resolução:

Alternativa D

Sabemos que r = 30 cm = 0,3 metros.

Queremos calcular a área total de um cilindro, então:

\(A=2\pi r\left(r+h\right)\)

\(A=2\cdot3\cdot0,3\left(0,3+1\right)\)

\(A=1,8\cdot1,3\)

\(A=2,34{\ m}^3\)

Publicado por Raul Rodrigues de Oliveira

Artigos Relacionados

Cilindro
Clique aqui e saiba tudo sobre o cilindro: seus elementos, sua classificação, suas fórmulas e muito mais!
Cone
Entenda o que é um cone, conheça a sua planificação e suas classificações, além de aprender a calcular a área total e o volume desse sólido geométrico.
Elementos de uma esfera
Clique e veja quais são os elementos da esfera, como essas figuras geométricas são definidas e alguns cálculos que os envolvem.
Sólidos geométricos
Clique para aprender o que são sólidos geométricos, seus tipos e para obter alguns exemplos desses objetos.
Tronco de cone
Entenda o que é tronco de um cone e saiba como calcular seu volume e sua área total. Conheça os elementos desse sólido geométrico e resolva exercícios sobre o tema.
Área da esfera
Aprenda a calcular a área de superfícies esféricas e de fusos esféricos por meio de fórmulas ou regras de três.
video icon
Escrito"Matemática do Zero | Princípio fundamental da contagem" em fundo azul.
Matemática do Zero
Matemática do Zero | Princípio fundamental da contagem
Nessa aula veremos o que é o princípio fundamental da contagem. O princípio fundamental da contagem é uma técnica para calcularmos de quantas maneiras decisões podem combinar-se. Se uma decisão pode ser tomada de n maneiras e outra decisão pode ser tomada de m maneiras, o número de maneiras que essas decisões podem ser tomadas simultaneamente é calculado pelo produto de n · m.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.