Volume da pirâmide

Para calcular o volume de uma pirâmide, é necessário conhecer a área da base e a altura da pirâmide, pois o volume é a terça parte do produto entre a área da base e a altura.
A pirâmide é um sólido geométrico que pode apresentar diferentes formas de base.

Para calcular o volume de uma pirâmide, é importante reconhecer que existem tipos diferentes de pirâmide, pois ela pode possuir a base formada por qualquer polígono, como um triângulo, um quadrado ou um hexágono. O volume da pirâmide depende diretamente da área da sua base e da sua altura, então, o volume de uma pirâmide qualquer é igual à área da base vezes a altura da pirâmide dividido por três.

Como a base pode ser qualquer polígono, então, para calcular sua área, é necessário antes reconhecer por qual polígono a base é formada. Por exemplo, a área da base de uma pirâmide de base quadrada é calculada utilizando-se a fórmula da área de um quadrado. Muitas vezes se compara o volume da pirâmide ao volume de um prisma. Se um prisma e uma pirâmide possuem mesma base e mesma altura, então, o volume do prisma será três vezes o volume da pirâmide.

Leia também: Quais são os sólidos de Platão?

Resumo sobre o volume da pirâmide

  • Para calcular o volume da pirâmide, utilizamos a fórmula:

Ab → área da base

h → altura

  • A área da base da pirâmide é calculada de acordo com o polígono da sua base.

  • O volume de um prisma é três vezes o volume da pirâmide de mesma altura e área da base.

Videoaula sobre volume da pirâmide

Qual a fórmula do volume da pirâmide?

Para calcular o volume da pirâmide, precisamos conhecer dois elementos importantes: a altura e a base.

Elementos da pirâmide.

O volume da pirâmide pode ser calculado por uma fórmula que depende diretamente do polígono que forma a base. Para calcular o volume de uma pirâmide qualquer, utilizamos a fórmula a seguir:

V → volume

Ab → área da base da pirâmide

h altura da pirâmide

  • Pirâmide de base quadrada

Quando a pirâmide possui a base quadrada, sabemos que a área da sua base é calculada pela fórmula da área de um quadrado, ou seja, Ab = l².

Exemplo:

Calcule o volume da pirâmide a seguir, sabendo que a sua base é formada por um quadrado:

Como a base da pirâmide é um quadrado, então, a área da base é dada por l².

Ab = l²

Ab = 6²

Ab = 36 m²

Agora que conhecemos a área da base e a altura, é possível calcular o volume da pirâmide:

Assim, o volume da pirâmide é de 120 m³

  • Pirâmide de base hexagonal

Quando a base de uma pirâmide é um hexágono regular, utilizamos para calcular sua área a fórmula da área do hexágono.

Exemplo:

Calcule o volume da pirâmide a seguir:

Como a sua base é um hexágono regular de lados medindo 2 cm, calcularemos sua área da base assim:

Conhecendo a área da base, podemos calcular o volume da pirâmide:

Dessa forma, o volume da pirâmide é de 13√3 cm³.

  • Pirâmide de base triangular

Assim como as pirâmides mostradas anteriormente, em uma pirâmide de base triangular, utilizamos a fórmula da área de um triângulo para encontrar a área da base.

Exemplo:

Sabendo que a pirâmide a seguir possui base triangular, em que a altura relativa da base que mede 4 cm é de 2 cm, calcule o volume da pirâmide.

Calculando a área da base da pirâmide, temos que:

Conhecendo a área da base, calcularemos o volume:

Assim, o volume da pirâmide é de, aproximadamente, 6,67 cm³.

Veja também: Quais as diferenças entre figuras planas e espaciais?

Qual a relação entre volume da pirâmide e volume do prisma?

Quando comparamos os volumes da pirâmide e do prisma, é possível percebermos uma relação entre esses dois sólidos geométricos. Quando eles possuem a mesma área da base e mesma altura, o volume do prisma sempre será igual a 3 vezes o volume da pirâmide, ou, então, podemos dizer que o volume da pirâmide é igual a 1/3 do volume do prisma.
 


Analisando as fórmulas, é possível perceber que o volume da pirâmide é igual ao volume do prisma dividido por 3, ou que o volume do prisma é igual a 3 vezes o volume da pirâmide. Essa relação só é válida quando a área da base e a altura desses sólidos geométricos forem as mesmas.

Exercícios resolvidos sobre volume da pirâmide

Questão 1- (Enem) Uma fábrica produz velas de parafina em forma de pirâmide quadrangular regular com 19 cm de altura e 6 cm de aresta da base. Essas velas são formadas por 4 blocos de mesma altura – 3 troncos de pirâmide de bases paralelas e 1 pirâmide na parte superior –, espaçados de 1 cm entre eles, sendo que a base superior de cada bloco é igual à base inferior do bloco sobreposto, com uma haste de ferro passando pelo centro de cada bloco, unindo-os, conforme a figura.

Se o dono da fábrica resolver diversificar o modelo, retirando a pirâmide da parte superior, que tem 1,5 cm de aresta na base, mas mantendo o mesmo molde, quanto ele passará a gastar com parafina para fabricar uma vela?

A) 156 cm³

B) 189 cm³

C) 192 cm³

D) 216 cm³

E) 540 cm³

Resolução

Alternativa B

Vamos calcular a diferença entre a pirâmide maior (VM) e a pirâmide menor (Vm).

A distância entre os blocos que formam a pirâmide é de 1 cm de distância, então, a altura da pirâmide maior é 19 – 3 = 16 cm.

A base é um quadrado de lado igual a 6 cm, então, temos que:

Ab = l² = 6² = 36

Desse modo, o volume da pirâmide maior é:

Agora calcularemos o volume da pirâmide menor.

A sua altura é encontrada quando dividimos 16 por 4, 16: 4 = 4 cm. Isso quer dizer que cada bloco mede 4 cm. Como a pirâmide menor é formada por um único bloco, sua altura é de 4 cm.

Fazendo o mesmo com a aresta, temos que 6 : 4 = 1,5.

Então, a área da base da pirâmide menor é 1,5² = 2,25. Calculando o volume, temos que:

Agora encontramos a diferença entre os volumes:

192 – 3 = 189 cm³

Questão 2 - (OMNI) Seja uma pirâmide hexagonal de área da base igual a 5 m² e altura igual a 12 m, o volume dela é de:

A) 20 m³

B) 20 m²

C) 60 m³

D) Nenhuma das alternativas

Resolução

Alternativa A

Dados

Ab = 5 m²

h = 12 cm

Como já conhecemos a área da base, basta calcular o volume da pirâmide:

Publicado por Raul Rodrigues de Oliveira

Artigos Relacionados

Comprimento da Circunferência
Determinando o comprimento da circunferência de acordo com a medida do raio e do valor de π.
Cone
Entenda o que é um cone, conheça a sua planificação e suas classificações, além de aprender a calcular a área total e o volume desse sólido geométrico.
Cálculo Aproximado de Áreas
Áreas de formato irregular.
Diferenças entre figuras planas e espaciais
Clique para aprender as maiores diferenças entre figuras planas e espaciais, como a quantidade de dimensões que as define.
Elementos de um poliedro
Clique para aprender o que são vértices, arestas e faces, isto é, os elementos de um poliedro!
Geometria
Acesse para ter acesso a todo o conteúdo estudado em Geometria e retirar todas as suas dúvidas sobre o assunto!
Pirâmide
Clique aqui, aprenda o que é pirâmide, conheça seus diferentes tipos e calcule seu volume e sua área utilizando as fórmulas específicas para esses cálculos.
Semelhança de triângulos
Entenda o que é semelhança entre triângulos e o teorema fundamental da semelhança de triângulos. Veja também os casos de semelhança de triângulos e como aplicá-los.
Teorema da bissetriz interna
Conheça o teorema da bissetriz interna e como aplicá-lo em um triângulo para encontrar valores desconhecidos. Confira ainda exercícios sobre o assunto.
Teorema de Tales
Veja aqui o que o teorema de Tales afirma e entenda como aplicá-lo em um triângulo. Veja também exercícios que ilustram a sua aplicação.
Volume de um Sólido Geométrico
Volume: definição e exemplos de sólidos geométricos
Volume do prisma
Clique e aprenda a calcular o volume do prisma, compreenda quais princípios permitem esse cálculo e obtenha alguns exemplos resolvidos.
Química
pH de soluções
Você já recebeu alguma receita de remédio milagroso pelo grupo da família dizendo que algum alimento de pH isso ou pH aquilo faria bem a sua saúde ou enfermidade? E você sabia interpretar se de fato aquele pH condizia com tal alimento ou substancia referida na receita? Então vem com a gente que nós vamos te explicar o que é pH, como é calculado, medido e a sua importância em nossas vidas.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos