Whatsapp icon Whatsapp

Gravitação universal

Gravitação universal é uma lei, demonstrada por Isaac Newton, que relaciona a força de atração entre o Sol, os planetas e outros corpos celestes no Sistema Solar.
Sistema Solar
O Sistema Solar é regido pela lei da gravitação universal.

A gravitação universal é uma lei desenvolvida por Isaac Newton para explicar as órbitas circulares dos planetas do Sistema Solar e a força atrativa entre eles. Sua fórmula foi obtida com base nas leis de Kepler, e a constante de gravitação universal (G) que aparece na equação é fruto do experimento da balança de torção desenvolvido por Henry Cavendish.

A descoberta dessa lei expandiu ainda mais a mentes dos cientistas, e, com base nela, Newton conseguiu explicar o formato da Terra, as marés, a órbita dos cometas, entre outros.

Leia também: História da astronomia — a evolução dos estudos sobre os corpos celestes

Resumo sobre gravitação universal

  • Com base na lei da gravitação universal, conseguimos determinar a força gravitacional atrativa entre dois corpos.
  • Para calcular a força gravitacional, é necessário ter conhecimento das massas dos corpos e da distância entre eles.
  • A fórmula da gravitação universal pode ser obtida com base nas leis de Kepler.
  • A constante de gravitação universal é uma constante de proporcionalidade cujo módulo vale 6,67408∙10-11Nm²/kg².

O que é a lei da gravitação universal?

Força atrativa sofrida pela Terra e Lua, descrita na lei da gravitação universal.
Força atrativa sofrida pela Terra e Lua, descrita na lei da gravitação universal.

A lei da gravitação universal é uma lei que foi descrita pelo físico sir Isaac Newton (1643-1727), na sua obra Philosophiae naturalis principia mathematica, publicada em 1687. Ela descreve que dois corpos sofrerão mutuamente a ação de uma força atrativa proporcional às suas massas e inversamente proporcional ao quadrado da distância entre eles.

O enunciado da lei da gravitação universal diz o seguinte:

Dois corpos atraem-se por uma força diretamente proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância que os separa.

Para se ter ideia da importância dessa lei para a Física, no livro III do Principia, Newton a aplica:

  • na discussão do movimento dos satélites naturais e planetas do Sistema Solar;
  • na demonstração do cálculo das massas dos planetas em relação à massa da Terra;
  • no cálculo do efeito da rotação da Terra no seu formato achatado;
  • na explicação sobre as marés;
  • no cálculo da órbita dos cometas etc.

Não pare agora... Tem mais depois da publicidade ;)

Qual a fórmula da gravitação universal?

Na gravitação universal, utilizamos a fórmula da força gravitacional, a saber:

\(F=G\ \frac{M\bullet m}{d^2}\)

  • \(F\ \)  é o módulo da força de atração gravitacional, medida em Newtons [\(N\)].
  • \(G \)  é a constante de gravitação universal, vale \(6,67\ \bullet\ {10}^{-11}\ N.m^2/{kg}^2\) .
  • \(M\)  é a massa do corpo 1, medida em quilogramas [\(kg\)] .
  • \(m \)  é a massa do corpo 2, medida em quilogramas [\(kg\)] .
  • \(d^2\)  é a distância entre os planetas, medida em metros [\(m\)].

Gravitação universal e as leis de Kepler

A lei da gravitação universal tem uma ligação direta com as leis de Kepler, principalmente a lei dos períodos (2ª lei) e a lei harmônica (3ª lei), já que, por meio delas, é possível demonstrar a fórmula da lei da gravitação universal, evidenciando a sua comprovação.

  • Videoaula sobre as leis de Kepler

História da gravitação universal

No começo do século XVII, Newton queria saber como os corpos se mantinham em órbita no Sistema Solar. Partindo disso, ele estudou a razão que fazia a Lua girar ao redor da Terra e, posteriormente, estudou a respeito dos movimentos planetários descritos por Johannes Kepler (1571-1630), Tycho Brache (1546-1601) e Galileu Galilei (1564-1642).

Baseado nos princípios de seus antecessores, ele elaborou a teoria de que todos os corpos que possuem massa sofrem atração entre si, e, com base na 2ª lei de Kepler, descobriu que os planetas só descrevem órbitas circulares ao redor do Sol se eles estiverem sujeitos a um movimento uniforme com uma aceleração centrípeta e com uma força atrativa entre eles.

Acrescentanto a isso a 3ª lei de Kepler, Newton chegou à conclusão de que a força é proporcional à massa do planeta e à massa do Sol, mas também inversamente proporcional ao quadrado da distância que os separa. Assim, ele desenvolveu a equação da lei da gravitacão universal, que, ainda que tenha sido desenvolvida em relação ao Sol e aos planetas do Sistema Solar, é válida também para os demais corpos celestes, por isso, ela é universal.

Leia também: Por que a Lua não cai na Terra?

A constante de gravitação universal

A constante de gravitação universal, também conhecida como constante newtoniana da gravitação, é uma constante física cujo valor é \({6},{67408}\bullet{{10}}^{-{11}}{N}\bullet{m}²/kg²\).  Como a atração entre dois corpos comuns tem um valor muito pequeno, podendo ser desprezado, foi apenas por meio do experimento da balança de torção, desenvolvido pelo cientista Henry Cavendish (1731-1810), entre 1797 e 1798, que pôde ser determinado o valor dessa constante.

Observação: Não confunda o G  (maiúsculo) da constante da gravitação universal com o g  (minúsculo) da aceleração da gravidade terrestre, cujo valor é, aproximadamente, \(9,81\ m/s^2\) .

Exercícios resolvidos sobre gravitação universal

Questão 1

(PUC-SP) A intensidade da força gravitacional com que a Terra atrai a Lua é F. Se fossem duplicadas a massa da Terra e da Lua e se a distância que as separa fosse reduzida pela metade, a nova força seria:

a) 16F

b) 8F

c) 4F

d) 2F

e) F

Resolução: Alternativa A

Usando a lei da gravitação universal, considerando \(M \) como sendo a massa da Terra e \(m \) a massa da Lua:

\(F=G\ \frac{M\bullet m}{d^2}\)

\(F=G\ \frac{M_T\bullet m_L}{d^2}\)

Agora, usaremos novamente a lei da gravitação universal, mas com uma força nova \(F\prime\) , e substituiremos os dados do enunciado nela:

\(F\prime=G\ \frac{M_T\bullet m_L}{d^2}\)

\(F\prime=G\ \frac{2M_T\bullet{2m}_L}{\left(\frac{d}{2}\right)^2}\)

\(F\prime=G\ \frac{{4\bullet M}_T\bullet m_L}{\frac{d^2}{4}}\)

\(F\prime=G\ \frac{{4\bullet M}_T\bullet m_L}{d^2}\bullet4\)

\(F^\prime=16\bullet G\ \frac{M_T\bullet m_L}{d^2}\)

Lembrando que \(F=G\ \frac{M_T\bullet m_L}{d^2}\) , então:

\(F^\prime=16\bullet F\)

Questão 2

(UPE) Considere a massa do Sol \(M_S=2·1030 kg\), a massa da Terra \(m_T=6·1024\) , a distância Terra–Sol (centro a centro) aproximadamente \(d_{TS}=1·1011 m\) e a constante de gravitação universal \(G=6,67\bullet{10}^{-11}\ N.m^2/{kg}^2\) . A ordem de grandeza da força de atração gravitacional entre o Sol e a Terra vale em N:

a) 1023

b) 1032

c) 1054

d) 1018

e) 1021

Resolução: Alternativa A

A força gravitacional entre o Sol e a Terra é dada pela lei da gravitação universal:

\(F=G\ \frac{M\bullet m}{d^2}\)

\(F=G\ \frac{M_S\bullet m_T}{d^2}\)

Substituindo os valores dados pelo enunciado, temos:

\(F=6,67\bullet{10}^{-11}\ (2·1030)∙(6·1024)(1 · 1011)2\)

\(F=6,67\bullet{10}^{-11}\ (2·1030)∙(6·1024)1·1022\)

\(F=80,04\bullet{10}^{-11}\bullet{10}^{30}\bullet{10}^{24}\bullet{10}^{-22}\)

\(F=80,04\bullet{10}^{-11+30+24-22}\ \) 

\(F=8,004\bullet{10}^1\bullet{10}^{21}\ \) 

\(F=8,004\bullet{10}^{1+21}\ \ \) 

\(F=8,004\bullet{10}^{22}\ N\ \ \)

A ordem de grandeza da força de atração é \({10}^{23}\) , já que \(8,004\) é maior que \(3,162\)

Publicado por Pâmella Raphaella Melo

Artigos Relacionados

Aceleração da gravidade
Descubra o que é a aceleração da gravidade, conheça as fórmulas usadas para calculá-la, e confira exercícios resolvidos sobre aceleração gravitacional.
Existem algumas obervações importantes a respeito das três leis de Newton
Cinco coisas que você precisa saber sobre as leis de Newton
Clique aqui e veja quais são as cinco coisas a respeito das leis de Newton que você precisa saber e aumente seus conhecimentos em Física!
O astronauta possui a mesma velocidade v da estação espacial
Corpos em órbitas circulares
Estudo do comportamento dos corpos em órbitas circulares.
As estrelas são grandes esferas de plasma que são alimentadas pela fusão nuclear.
Estrelas
Que tal saber mais sobre as estrelas? Confira o que são, do que são feitas e como é a evolução das estrelas, do seu nascimento ao seu fim.
Força centrípeta
Entenda o que é força centrípeta, conheça as fórmulas usadas para calculá-la, e confira alguns exemplos em que ela atua bem como exercícios resolvidos.
Projeção de um movimento harmônico simples circular uniforme
Função horária da elongação no MHS
Estudo do movimento oscilatório: veja como determinar a função horária da elongação no MHS.
Sistema de referência para o movimento de queda livre, com orientação do eixo para baixo
Funções horárias do movimento de queda livre
Veja aqui quais são as funções horárias que descrevem o movimento de queda livre de um corpo.
Isaac Newton
Clique e conheça detalhes da vida de Isaac Newton, um dos grandes cientistas da humanidade. Veja quais foram as contribuições que ele deixou como legado.
Força de atração entre duas partículas
Lei da gravitação universal
A lei da gravitação universal diz que duas partículas se atraem com forças cuja intensidade é diretamente proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância que as separa.
As leis de Kepler explicam os movimentos de translação dos planetas ao redor do Sol
Leis de Kepler
Conheça as leis de Kepler, postulados que determinam o “balé” dos planetas ao redor do Sol.
A existência das marés alta e baixa ocorre graças à atração gravitacional do Sol e da Lua
Marés
Saiba como ocorre o impressionante fenômeno das marés!
A NASA é a agência espacial estadunidense para assuntos aeronáuticos e de exploração espacial
NASA
Clique aqui e saiba mais sobre a NASA, agência espacial estadunidense responsável pelo desenvolvimento de equipamentos de aeronáutica e exploração espacial.
A velocidade de movimento da Lua é capaz de mantê-la em seu movimento ao redor da Terra
Por que a Lua não cai na Terra?
Você sabe por que a Lua não cai na Terra? Clique aqui e entenda o que possibilita que o satélite natural terrestre mantenha-se em sua trajetória!
Homem deitado em uma cama de faquir
Pressão
Você sabe o que é pressão? Aprenda o que ela é na física, sua fórmula e seus tipos. Reforce seus conhecimentos com nossos exercícios resolvidos sobre o tema.
Primeira Lei de Kepler
Acesse e confira um resumo sobre a primeira lei de Kepler. Aprenda mais com uma introdução sobre o assunto, e verifique sua aprendizagem com exercícios resolvidos.
A lua é o satélite natural da Terra
Satélites
Saiba mais sobre os satélites e as leis da Física que regem o seu movimento.
Placa de trânsito representando duplo sentido na via, através do uso de dois vetores
Soma de vetores
Veja aqui o conceito de vetor e aprenda também diferentes formas de realizar a soma de dois vetores.
Partícula de massa <i>m</i> deslocando de um ponto A para um ponto B
Teorema da Energia Cinética
O que diz o teorema da energia cinética?
Para a teoria das cordas, é possível que existam dimensões extras e até mesmo universos paralelos ao nosso.
Teoria das cordas
Você conhece a teoria das cordas? Confira uma explicação da teoria feita para leigos no assunto e entenda qual é a relação dessa teoria com as diferentes dimensões do Universo!
A pequena mancha negra na parte superior do Sol é Vênus passando na frente do disco solar
Trânsito de Vênus e Mercúrio
Saiba mais sobre o trânsito de Vênus e Mercúrio, fenômeno raro que ocorre quando esses planetas passam na frente do Sol!
Unidades de Pressão
Entenda as relações entre as unidades de medidas de pressão.
A velocidade de escape é a velocidade mínima necessária para que um corpo escape da atração gravitacional de um corpo celeste, como a Terra.
Velocidade de escape
Saiba mais sobre a velocidade de escape, que é a velocidade mínima necessária para escapar da atração gravitacional de um corpo celeste.
video icon
Guia de Profissões
Guia de Profissões | A vida na Teologia, com Robinson Jacintho
Quer ter mais informações sobre o curso de Teologia e a profissão? Confira uma entrevista com o teólogo Robinson Jacintho, que fala tudo o que você precisa saber sobre o assunto.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.